Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

99 results about "Carbon-13 NMR" patented technology

Carbon-13 (C13) nuclear magnetic resonance (most commonly known as carbon-13 NMR or ¹³C NMR or sometimes simply referred to as carbon NMR) is the application of nuclear magnetic resonance (NMR) spectroscopy to carbon. It is analogous to proton NMR (¹H NMR) and allows the identification of carbon atoms in an organic molecule just as proton NMR identifies hydrogen atoms. As such ¹³C NMR is an important tool in chemical structure elucidation in organic chemistry. C NMR detects only the ¹³C isotope of carbon, whose natural abundance is only 1.1%, because the main carbon isotope, ¹²C, is not detectable by NMR since its nucleus has zero spin.

Multiple catalyst system for olefin polymerization and polymers produced therefrom

This invention relates to a polymer comprising one or more C3 to C40 olefins, optionally one or more diolefins, and less than 15 mole % of ethylene, where the polymer has: a) a Dot T-Peel of 1 Newton or more; and b) a branching index (g′) of 0.95 or less measured at the Mz of the polymer; c) an Mw of 100,000 or less. This invention also relates a polymer comprising one or more C3 to C40 olefins where the polymer has: a) a Dot T-Peel of 1 Newton or more on Kraft paper; b) a branching index (g′) of 0.95 or less measured at the Mz of the polymer; c) a Mw of 10,000 to 100,000; and d) a heat of fusion of 1 to 70 J / g. This invention also relates a polymer comprising one or more C3 to C40 olefins where the polymer has: a) a Dot T-Peel of 1 Newton or more on Kraft paper; b) a branching index (g′) of 0.98 or less measured at the Mz of the polymer; c) a Mw of 10,000 to 60,000; d) a heat of fusion of 1 to 50 J / g. This invention also relates to a homopolypropylene or a copolymer of propylene and up to 5 mole % ethylene having: a) an isotactic run length of 1 to 30 (isotactic run length “IRL” is defined to be the percent of mmmm pentad divided by 0.5× percent of mmmr pentad) as determined by Carbon 13 NMR, preferably 3 to 25, more preferably 4 to 20, b) a percent of r dyad of greater than 20%, preferably from 20 to 70% as determined by Carbon 13 NMR, and c) a heat of fusion of 70 J / g or less, preferably 60 J / g or less, more preferably between 1 and 55 J / g, more preferably between 4 and 50 J / g. This invention further relates to a process to produce an olefin polymer comprising: 1) selecting a first catalyst component capable of producing a polymer having an Mw of 100,000 or less and a crystallinity of 5% or less at selected polymerization conditions; 2) selecting a second catalyst component capable of producing polymer having an Mw of 100,000 or less and a crystallinity of 20% or more at the selected polymerization conditions; 3) contacting the catalyst components in the presence of one or more activators with one or more C3 to C40 olefins, at the selected polymerization conditions in a reaction zone; 4) obtaining the polymer. This invention further relates to a continuous process to produce a branched olefin polymer comprising: 1) selecting a first catalyst component capable of producing a polymer having an Mw of 100,000 or less and a crystallinity of 5% or less under selected polymerization conditions; 2) selecting a second catalyst component capable of producing polymer having an Mw of 100,000 or less and a crystallinity of 20% or more at the selected polymerization conditions; 3) contacting the catalyst components in the presence of one or more activators with one or more C3 to C40 olefins, and, optionally one or more diolefins; 4) at a temperature of greater than 100° C.; 5) at a residence time of 120 minutes or less; 6) wherein the ratio of the first catalyst to the second catalyst is from 1:1 to 50:1; 7) wherein the activity of the catalyst components is at least 100 kilograms of polymer per gram of the catalyst components; and wherein at least 20% of the olefins are converted to polymer.
Owner:EXXONMOBIL CHEM PAT INC

Shale gas reservoir pore structure quantitative calculation method based on nuclear magnetic resonance

The invention discloses a shale gas reservoir pore structure quantitative calculation method based on nuclear magnetic resonance. The shale gas reservoir pore structure quantitative calculation methodcomprises the following steps: collecting cores; drilling parallel samples, carrying out oil and water self-adsorption nuclear magnetic resonance experiment measurement; contrastively analyzing the difference of a parallel sample oil and water nuclear magnetic resonance T2 spectrum, and determining the distribution of different wetting pore types on the nuclear magnetic resonance T2 spectrum; obtaining a shale gas reservoir full-pore distribution curve according to high-pressure pressurized mercury, nitrogen adsorption and carbon dioxide adsorption; furthermore, obtaining an intersection plate of pore diameters and corresponding T2 time; and according to the intersection plate of different pore types of pore diameters and corresponding T2 time, establishing a quantitative calculation model of the pore diameters according to the pore types. The method has the advantages that a shale gas reservoir pore full-pore distribution curve can be quantitatively calculated through the technology;simultaneously, the nuclear magnetism measurement is quick, simple and loss-free, and is higher in practicability by compared with high-pressure pressurized mercury, nitrogen adsorption and carbon dioxide adsorption; and compared with a conventional method, the calculation result is more accurate.
Owner:SOUTHWEST PETROLEUM UNIV

Method for obtaining nuclear magnetic resonance two-dimensional J-resolved spectroscopy in non-uniform magnetic field

The invention discloses a method for obtaining nuclear magnetic resonance two-dimensional J-resolved spectroscopy in a non-uniform magnetic field, and relates to a nuclear magnetic resonance spectrometer. The method comprises the steps that a piece of one-dimensional spectroscopy is sampled through a general one-dimensional pulse sequence, the line width of a spectral line is obtained, the basis is provided for spectral width parameter setting, and the line width reflects the magnetic field environment uniformity condition; (2) an intermolecular single-quantum coherent two-dimensional J-resolved spectroscopy pulse sequence which is compiled in advance is led to the nuclear magnetic resonance spectrometer; (3) an intermolecular single-quantum coherent signal selection module, an indirect dimension evolution period t1 module, an indirect dimension evolution period t2 module and a signal sampling period t3 module of the intermolecular single-quantum coherent two-dimensional J-resolved spectroscopy pulse sequence are opened, and experiment parameters of the modules of the intermolecular single-quantum coherent two-dimensional J-resolved spectroscopy pulse sequence are set; (4) the intermolecular single-quantum coherent two-dimensional J-resolved spectroscopy pulse sequence with the experiment parameters set in the step (3) is executed, and data sampling is carried out; (5) after data sampling is accomplished, related data post-processing is carried out to obtain the high-resolution two-dimensional J-resolved spectroscopy free from influence of the non-uniform magnetic field.
Owner:XIAMEN UNIV

Method for simultaneously quantitatively analyzing water and oil in oily sludge through low-field NMR (nuclear magnetic resonance)

The invention relates to a method for simultaneously quantitatively analyzing water and oil in oily sludge through low-field NMR (nuclear magnetic resonance). The method comprises steps as follows: deionized water and crude oil are taken as standard samples to perform low-field NMR measurement, and calibration curves of water and oil are established; a to-be-measured sample which is uniformly stirred is divided into two parts and put in containers respectively, a reagent capable of realizing signal partition of oil and water is added to one part, and the mixture is uniformly stirred to form a sample a; the other part keeps unchanged and is taken as a sample b; the two samples are subjected to low-field NMR measurement to obtain an echo attenuation curve, and transverse relaxation time T2 curves of the two samples are obtained through inversion with a joint iterative correction algorithm; the transverse relaxation time T2 curves of the two samples are subjected to area integration and calculation to obtain integral areas of a water peak and an oil peak, and the calibration curves of water and oil are substituted to calculate water content and oil content of the to-be-measured sample b. The method can be suitable for measurement of content of water and oil in various kinds of oily sludge, and the measurement result is high in accuracy and good in repeatability and consumes short time.
Owner:UNIV OF SHANGHAI FOR SCI & TECH

Hydration degree measurement method for cement-based materials based on nuclear magnetic resonance

The invention discloses a hydration degree measurement method for cement-based materials based on nuclear magnetic resonance, which belongs to the technical field of cement material measurement. The hydration degree measurement method disclosed by the invention adopts a nuclear magnetic resonance technique to test nuclear magnetic signals of the cement-based materials at different ages; a relation between transverse relaxation time and the nuclear magnetic signals is obtained by inverse analysis; furthermore, a ratio of nuclear magnetic semaphores of left and right peaks is taken as a nuclear magnetic signal ratio of gel pore water and capillary pore water, and then the hydration degree of the cement-based materials to be detected at the age is solved according to a Powers model. Compared with traditional methods including a muffle furnace method and the like, the hydration degree measurement method disclosed by the invention is a nondestructive testing method, can reduce operation steps of a test greatly and shorten a testing period greatly, and can be used for monitoring samples continuously so as to ensure that the errors of test results are small; meanwhile, the method disclosed by the invention does not need to calibrate nuclear magnetic resonance semaphores and sample water content and directly adopts the ratio of the nuclear magnetic semaphores of the left and right peaks, namely a microstructure factor, as a parameter to represent the hydration degree, and therefore, measurement procedures and errors are reduced.
Owner:HOHAI UNIV

Chloroprene-based block copolymer, soapless polychloroprene-based latex, and processes for producing the same

An object of the present invention is to provide a novel polychloroprene-based copolymer, a soapless polychloroprene-based latex, and a process for producing the same in a simple and convenient manner, which are intended to be used for the improvement in adhesiveness and water resistance of a conventional polychloroprene adhesive or the improvement in oil resistance and adhesiveness of a styrene-butadiene block copolymer.
The invention relates to a chloroprene-based block copolymer comprising a polymer (A) having a composition represented by the following formula (1) and a chloroprene-based polymer (B), the polymer (A) being linked to one terminal or both terminals of the chloroprene-based polymer (B), and the total amount of the 1,2-bond and the isomerized 1,2-bond in the chloroprene-based polymer (B) as determined by carbon-13 nuclear magnetic resonance spectrometry being 2.0 mol % or less; a soapless polychloroprene-based latex comprising an amphipathic chloroprene copolymer having a hydrophobic chloroprene-based polymer and a hydrophilic oligomer or polymer having an acidic functional group linked to the hydrophobic chloroprene-based polymer and 2 wt % or less of an emulsifying agent; and a process for producing the same:
wherein U represents hydrogen, a methyl group, a cyano group, or a substituted alkyl group; V represents a phenyl group, a substituted phenyl group, a carboxyl group, an alkoxycarbonyl group, a substituted alkoxycarbonyl group, an allyloxycarbonyl group, a substituted allyloxycarbonyl group, an acyloxy group, a substituted acyloxy group, an amido group, or a substituted amido group; X represents hydrogen, a methyl group, chlorine, or a cyano group; Y represents hydrogen, chlorine, or a methyl group; Q represents a polymerization residue of maleic anhydride, citraconic acid, maleic acid, fumalic acid, a maleate ester, or a fumalate ester; and k, n, and m each represents an integer of 0 or more.
Owner:TOSOH CORP

Isoindole alkaloid compound in purslane, and extraction and separation method of isoindole alkaloid compound

The invention relates to the field of extraction and separation of traditional Chinese medicines, in particular to an isoindole alkaloid compound which is extracted, separated and identified from purslane, and an extraction and separation method of the isoindole alkaloid compound. The new alkaloid compound has a molecular formula of C28H23NO8 and is named as Oleraisoindole. The invention also provides the extraction and separation method of the isoindole alkaloid compound; the method comprises the steps of sequentially extracting by means of water boiling, extracting by using ethyl acetate, carrying out silica gel column chromatography, purifying by using an octadecylsilyl medium-pressure column and Sephadex LH-20, and carrying out liquid phase separation. The isoindole alkaloid compound is identified by using ultraviolet (UV), infrared ray (IR), HR-ESI-TOF-MS, hydrogen-1 nuclear magnetic resonance (1H-NMR), carbon-13 nuclear magnetic resonance (13C-NMR) and a two-dimensional nuclear magnetic spectrum analysis method. The compound has potential anti-inflammatory activity, anti-tumor activity, and the like; the invention also provides the preparation method of the compound, thus providing a lead compound and a theoretical basis for development of new medicines and new components.
Owner:LIAONING UNIV OF TRADITIONAL CHINESE MEDICINE

Method for obtaining high-resolution NMR (nuclear magnetic resonance) spectra in inhomogeneous magnetic field

A method for obtaining high-resolution NMR (nuclear magnetic resonance) spectra in an inhomogeneous magnetic field relates to a NMR spectrum. The method includes the steps: applying a radio frequency pulse to rotate a magnetization vector from an axis X to a plane XY; evolving while applying coherent gradient in a certain direction; applying a reunion pulse after the evolving is over to acquiring magnetic resonance signals; determining applying manner, intensity and direction of the coherent gradient, the method of which is that a half width LW is used to measure the degree of magnetic field inhomogeneity, Nu is taken as the gyromagnetic ratio of a magnetic core, effective test length of a sample is L, and the applying intensity on the gradient is set to be LW/(NuL); increasing and decreasing the intensity of the gradient to obtain corrected magnetic resonance signals; conducting fourier transforming to obtain coherence spectra of the NMR gradient and the inhomogeneous magnetic field; identifying coherent spectrum via the use of pattern recognition algorithms and recording spectral peak distribution map information; correcting the coherent spectrum; cumulatively projecting the corrected spectrum; finally obtaining one-dimensional high-resolution NMR spectra.
Owner:XIAMEN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products