Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

512 results about "Pantomography" patented technology

Pantomography in assessment of the osteoporosis risk group. The relationship between postmenopausal osteoporosis and periodontal disease Furthermore, some facilities have acquired pantomography (Panorex) equipment, which can be extremely helpful when evaluating the mandible.

System and method of ultrasonic mammography

A system for ultrasonic mammography includes an ultrasonic mammography device for constructing an ultrasonic image of a breast having a support structure with an ultrasonic transducer mounted on the support structure. The system also includes a personal digital assistant operatively connected to the ultrasonic transducer via a communication link, a patient computer system operatively connected to the personal digital assistant via a second communication link, and a healthcare provider computer system operatively connected to the patient computer system via an internet, for constructing the image of the breast. The method includes the steps of positioning the ultrasonic mammography device having an ultrasonic transducer on the patient and activating the ultrasonic transducer to generate a signal for constructing an image of the breast. The method also includes the steps of transmitting the signal from the ultrasonic transducer to the personal digital assistant, and transmitting the signal via an internet to a healthcare provider computer. The method further includes the steps of using the signal to construct an image of the patient's breast.
Owner:MICROLIFE MEDICAL HOME SOLUTIONS

Hand-held fluid delivery device with sensors to determine fluid pressure and volume of fluid delivered to intervertebral discs during discography

A fluid delivery device is provided for delivering fluid to a target site such as an intervertebral disc during discography. The fluid delivery device includes pressure and volume sensors to determine the pressure and the volume of the fluid delivered to the intervertebral disc. The fluid delivery device is hand-held during use and includes a syringe assembly having a plunger with threads that enables controlled discharge of the fluid from the fluid delivery device by rotating the plunger in a housing of the fluid delivery device. The fluid delivery device may also include a communication module to wirelessly transfer data to an external device outside of a sterile field, while the fluid delivery device is in the sterile field. The fluid delivery device may also include a physiological sensor to monitor involuntary pain responses based on changing physiological parameters such as increases in body temperature or blood pressure.
Owner:STRYKER CORP

Self-contained power-assisted syringe

A self-contained and hand-held power-assisted syringe is provided which is suitable for the controlled injection of fluid material during medical procedures such as coronary angiography procedures which utilize small-bore and small sized guide catheter systems. The present invention provides a greater degree of injection power on-demand than was previously possible in a portable and hand-held syringe; and it can deliver larger volumes of radiopaque contrast medium at greater pressures than was previously possible using a conventional manual syringe. The power assisted syringe, along with all components necessary for its effective use and operation, may be pre-packaged and steriled within a single container and then disposed of after use.
Owner:KIM DUCKSOO +2

Detection and localization of vascular occlusion from angiography data

A technique for detecting and localising vascular occlusions in the brain of a patient is presented. The technique uses volumetric angiographic data of the brain. A mid-sagittal plane and / or lines is / are identified within the set of angiographic data. Optionally, the asymmetry of the hemispheres is measured, thereby obtaining an initial indication of whether an occlusion might be present. The angiographic data is mapped to pre-existing atlas of blood supply territories, thereby obtaining the portion of the angiographic data corresponding to each of the blood supply territories. For each territory (including any sub-territories), the asymmetry of the corresponding portion of the angiographic data about the mid-sagittal plane / lines is measured, thereby detecting any of the blood supply territory including an occlusion. The angiographic data for any such territory is displayed by a three-dimensional imaging technique.
Owner:AGENCY FOR SCI TECH & RES

Method and apparatus for guiding a device in a totally occluded or partly occluded tubular organ

An apparatus and method for detecting, tracking and registering a device (218) within a tubular organ (210) of a subject. The devices include guide wire (216) tip or therapeutic devices, and the detection and tracking uses fluoroscopic images taken prior to or during a catheterization operation. The devices are fused with images or projections of models depicting tile tubular organs. Tile method and apparatus are used for treating chronic total occlusion or near total occlusion situations, by navigating a driller along the tubular organ (210) proximally to the occlusion point, in areas which are-not viewable in an angiogram, and optionally enabling the penetration of the occlusion in a preferred area.
Owner:PAIEON INC

Method and apparatus for performing intra-operative angiography

InactiveUS20050182434A1Accurately determine extentSurgeryEndoscopesInvasive ProcedurePerfusion
Method for assessing the patency of a patient's blood vessel, advantageously during or after treatment of that vessel by an invasive procedure, comprising administering a fluorescent dye to the patient; obtaining at least one angiographic image of the vessel portion; and evaluating the at least one angiographic image to assess the patency of the vessel portion. Other related methods are contemplated, including methods for assessing perfusion in selected body tissue, methods for evaluating the potential of vessels for use in creation of AV fistulas, methods for determining the diameter of a vessel, and methods for locating a vessel located below the surface of a tissue.
Owner:NOVADAG TECH INC

Segmentation of left ventriculograms using boosted decision trees

An automated method for determining the location of the left ventricle at user-selected end diastole (ED) and end systole (ES) frames in a contrast-enhanced left ventriculogram. Locations of a small number of anatomic landmarks are specified in the ED and ES frames. A set of feature images is computed from the raw ventriculogram gray-level images and the anatomic landmarks. Variations in image intensity caused by the imaging device used to produce the images are eliminated by de-flickering the image frames of interest. Boosted decision-tree classifiers, trained on manually segmented ventriculograms, are used to determine the pixels that are inside the ventricle in the ED and ES frames. Border pixels are then determined by applying dilation and erosion to the classifier output. Smooth curves are fit to the border pixels. Display of the resulting contours of each image frame enables a physician to more readily diagnose physiological defects of the heart.
Owner:UNIV OF WASHINGTON

Coupling the viewing direction of a blood vessel's CPR view with the viewing angle on the 3D tubular structure's rendered voxel volume and/or with the C-arm geometry of a 3D rotational angiography device's C-arm system

The present invention describes a method for rendering and displaying a curved planar reformat (CPR) view (7′) of a blood vessel's 3D tubular structure (1), wherein the viewing direction of the curved planar reformat view (7′) is coupled to the viewing angle on a segmented or raw representation of the 3D tubular structure's rendered voxel volume to be visualized or, alternatively, to the C-arm geometry of a 3D rotational angiography device's C-arm system (6). The proposed method thus enables measurements on the X-ray image which do not suffer from spatial foreshortening and do not need to be calibrated. Thereby, said coupling can be performed bidirectional. According to a first aspect of the proposed method, this means that the viewing direction of the aforementioned curved planar reformat view (7′) follows the viewing angle on a segmented or raw representation of the 3D tubular structure's rendered voxel volume to be visualized, or vice versa. According to another aspect of the proposed method, this means that the viewing direction of the curved planar reformat view (7′) is set depending on the C-arm geometry given by the roll (θx), pitch (θy) and yaw angle (θz) of a 3D rotational angiography device's C-arm system (6), or vice versa.
Owner:KONINK PHILIPS ELECTRONICS NV

Method for preparing multifunctional multilayer micro/nanometer core-shell structure

The invention relates to a method for preparing multifunctional three-layer core-shell structure micro/nano particles. The particles are of spherical structures, the thickness of each shell layer is controllable, multiple materials or medicines having different properties can be effectively and independently coated simultaneously, multifunctional characteristic compounding can be realized by adding functional auxiliary materials into each phase, the advantages of multilayer core-shell structures and excellent optical, electrical, magnetic, acoustic and biological characteristics are integrated into a whole, drug controlled release and medical contrast imaging application can be realized, and particularly the core-shell structure has excellent application prospects in the aspects of disease treatment and medical imaging. The preparation method is a coaxial electrostatic spraying method, the process and equipment are simple, the generated particles are controllable in forms, the particle size, shape and core-shell thickness of the obtained core-shell structure particles can be controlled by changing the operating parameters, the particle size is uniform, and the core-shell structure has good application prospects. In addition, the core-shell structure particles can serve as a precursor for preparing a hollow and special ring structure.
Owner:ZHEJIANG UNIV

Respiratory gated image fusion of computed tomography 3D images and live fluoroscopy images

A system and method is provided directed to improved real-time image guidance by uniquely combining the capabilities of two well-known imaging modalities, anatomical 3D data from computer tomography (CT) and real time data from live fluoroscopy images provided by an angiography / fluoroscopy system to ensure a more efficient and safer intervention in treating punctures, drainages and biopsies in the abdominal and thoracic areas of the human body.
Owner:SIEMENS HEALTHCARE GMBH

Method and apparatus for performing intra-operative angiography

The device is provided with a laser (1) for exciting the fluorescent imaging agent which emits radiation at a wavelength that causes any of the agent located within the vasculature or tissue of interest (3) irradiated thereby to emit radiation of a particular wavelength. Advantageously, a camera capable of obtaining multiple images over a period of time, such as a CCD camera (2) may be used to capture the emissions from the imaging agent. A band-pass filter (6) prevents the capture of radiation other than that emitted by the imaging agent. A distance sensor (9) incorporates a visual display (9a) providing feedback to the physician saying that the laser be located at a distance from the vessel of interest that is optimal for the capture of high quality images.
Owner:NAT RES COUNCIL OF CANADA

MR coronary angiography with a fluorinated nanoparticle contrast agent at 1.5 T

InactiveUS20060239919A1Reduce eliminateHigh and low oxygen tensionDispersion deliveryNanomedicine3d imageNon invasive
Disclosed herein is a medical imaging technique that uses a fluorinated nanoparticle contrast agent for imaging of an interior portion of a body. The fluorinated nanoparticles preferably comprise nontargeted intravascular fluorocarbon or perfluorocarbon nanoparticles. The interior body portion may be a patient's vasculature, and the medical imaging is preferably noninvasive MR angiography, which may encompass (either for 2D imaging or 3D imaging) MR coronary angiography, MR carotid angiography, MR peripheral angiography, MR cerebral angiography, MR arterial angiography, and MR venous angiography. Coils tuned to match to the 19F signal can be used, or dual tuned coils for 19F and 1H imaging can be used. Clinical field strengths (e.g. 1.5 T) and clinical doses may be used while still providing effective images.
Owner:WASHINGTON UNIV IN SAINT LOUIS

Catheter system for delivery of therapeutic compounds to cardiac tissue

InactiveUS20050159727A1Prevent inadvertent removalPrevent removalUltrasound therapyDiagnosticsMedicineTransducer
This is a method and an apparatus for the treatment or introduction of contrast fluids into tissue, particularly cardiac tissue. The apparatus includes a catheter having an elongated flexible body and a tissue infusion apparatus including a hollow infusion needle configured to secure the needle into the tissue when the needle is at least partially inserted into the tissue to help prevent inadvertent removal of the needle from the tissue. This permits the selected treatment or contrast fluid to be confined to a specific site. The catheter may also include a visualization assembly including a transducer at the distal end of the body.
Owner:LESH MICHAEL D

Three-dimensional flow radiographic method and system based on optical coherence tomography of feature space

ActiveCN109907731AEliminate the effects of motion artifactsSolve the problem of unsatisfactory suppression effectSensorsAngiographyCovarianceSignal-to-quantization-noise ratio
The invention discloses a three-dimensional flow radiographic method and system based on optical coherence tomography of feature space. OCT (optical coherence tomography) scattering signals of a scattering signal sample in a three-dimensional space are collected through a collector; a two-dimensional feature space is constructed through a theoretically established classifier in combination with local signal-to-noise ratios of the OCT scattering signals and a decorrelation coefficient; dynamic flow signal and stationary tissue classification is achieved. The specific steps include calculating and analyzing the OCT scattering signals through first-order and zero-order auto-covariance to obtain the signal-to-noise ratios of the OCT scattering signals and two decorrelated features; constructing a signal-to-noise ratio reciprocal-decorrelation coefficient two-dimensional feature space; constructing a linear classifier of ID spaces based on the principle of multivariate time series, and removing background of the stationary surrounding tissues. The method and system herein can evidently inhibit the influence of system noise upon flow radiography, contrast of flow images is increased, vessel visibility of deep tissues is particularly increased, and accuracy of blood flow can be improved.
Owner:ZHEJIANG UNIV

System and method for adaptive bolus chasing computed tomography (CT) angiography

A method of utilizing bolus propagation and control for contrast enhancement comprises measuring with an imaging device a position of a bolus moving along a path in a biological structure. The method further comprises predicting a future position of the bolus using a simplified target model and comparing the predicted future position of the bolus with the measured position of the bolus. A control action is determined to eliminate a discrepancy, if any, between the predicted position of the bolus and the measured position of the bolus and the relative position of the imaging device and the biological structure is adaptively adjusted according to the control action to chase the motion of the bolus.
Owner:IOWA RES FOUND UNIV OF

Rapid multi-slice MR perfusion imaging with large dynamic range

The present invention includes a method and apparatus to perform rapid multi-slice MR imaging without ECG gating or requiring breath-holding that is capable of renal profusion analysis and angiographic screening. An ungated interleaved pulse sequence is applied in rapid succession, followed by a delay interval. The ungated interleaved pulse sequence is repeatedly played out with the predefined delay interval between each application of the pulse sequence. The resulting images provide not only a series of temporal phases of contrast-enhanced blood uptake for renal profusion analysis, but also provide enough dynamic range to include angiographic screening of the renal arteries.
Owner:GENERAL ELECTRIC CO

Thiol-polyethylene glycol modified magneto-optical composite nano-material and its application

The invention discloses a thiol-polyethylene glycol modified magneto-optical composite nano-material and its application. An up-conversion nano material is taken as a basal layer, the surface of the basal layer is provided with a polyacrylic acid layer, the surface of the polypropylene layer is provided with a layer of dopamine modified ferriferrous oxide magnetic particles, a golden shell layer is covered on the dopamine modified ferriferrous oxide magnetic particles layer, and the thioctic acid modified polyethylene glycol is provided on the golden shell layer; the thiol-polyethylene glycolmodified magneto-optical composite nano-material has guidance functions of up-conversion imaging and magnetic resonance imaging dual imaging, under the physical induction action of the magnetic field, the nano-material of the invention enables magnetic targeting to the specific position, so that the distribution in other internal organs can be reduced, and the damage in other internal organs during the treatment process is reduced. The nano-material can be taken as a good reagent for photo-thermal treatment by using the strong absorption property on the surface. The magnetic targeting photo-thermal treatment is combined under the imaging guidance, thereby the composite nano-material of the invention plays an important effect in clinical medical science and biological technology in future.
Owner:SUZHOU UNIV

System and method for image-based respiratory motion compensation for fluoroscopic coronary roadmapping

InactiveUS20110274334A1Large image motionEstimate soft tissue motion reliablyImage enhancementImage analysisFluoroscopic imageTransformation parameter
A method for compensating respiratory motion in coronary fluoroscopic images includes finding a set of transformation parameters of a parametric motion model that maximize an objective function that is a weighted normalized cross correlation function of a reference image acquired at a first time that is warped by the parametric motion model and a first incoming image acquired at a second time subsequent to the first time. The weights are calculated as a ratio of a covariance of the gradients of the reference image and the gradients of the first incoming image with respect to a root of a product of a variance of the gradients of the reference image and the variance of the gradients of the first incoming image. The parametric motion model transforms the reference image to match the first incoming image.
Owner:SIEMENS HEALTHCARE GMBH

Method for matching and registering medical image data

An automatic method for the registration of prone and supine computed tomographic colonography data is provided. The method improves the radiologist's overall interpretation efficiency as well as provides a basis for combining supine / prone computer-aided detection results automatically. The method includes determining (centralized) paths or axes of the colon from which relatively stationary points of the colon are matched for both supine and prone positions. Stretching and / or shrinking of either the supine or prone path perform registration of these points. The matching and registration occurs in an iterative and recursive manner and is considered finished based on one or more decision criteria.
Owner:THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIV

Detection and tracking of interventional tools

The present invention relates to minimally invasive X-ray guided interventions, in particular to an image processing and rendering system and a method for improving visibility and supporting automatic detection and tracking of interventional tools that are used in electrophysiological procedures. According to the invention, this is accomplished by calculating differences between 2D projected image data of a preoperatively acquired 3D voxel volume showing a specific anatomical region of interest or a pathological abnormality (e.g. an intracranial arterial stenosis, an aneurysm of a cerebral, pulmonary or coronary artery branch, a gastric carcinoma or sarcoma, etc.) in a tissue of a patient's body and intraoperatively recorded 2D fluoroscopic images showing the aforementioned objects in the interior of said patient's body, wherein said 3D voxel volume has been generated in the scope of a computed tomography, magnet resonance imaging or 3D rotational angiography based image acquisition procedure and said 2D fluoroscopic images have been co-registered with the 2D projected image data. After registration of the projected 3D data with each of said X-ray images, comparison of the 2D projected image data with the 2D fluoroscopic images—based on the resulting difference images—allows removing common patterns and thus enhancing the visibility of interventional instruments which are inserted into a pathological tissue region, a blood vessel segment or any other region of interest in the interior of the patient's body. Automatic image processing methods to detect and track those instruments are also made easier and more robust by this invention. Once the 2D-3D registration is completed for a given view, all the changes in the system geometry of an X-ray system used for generating said fluoroscopic images can be applied to a registration matrix. Hence, use of said method as claimed is not limited to the same X-ray view during the whole procedure.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Laparoscopic Cholecystectomy With Fluorescence Cholangiography

Use of near-infrared fluorescence imaging in performing an endoscopic surgery, such as laparoscopic cholecystectomy. A composite video image of the surgical field (e.g. the biliary anatomy) is shown on a display screen. The composite video image combines a visible color image and a fluorescence image of the surgical field. Using various techniques, selective fluorescence imaging of a particular area of interest in the surgical field is made possible. For example, in a cholecystectomy procedure, the biliary ducts may be the particular area of interest for the selective fluorescence imaging.
Owner:YU STEVEN SOUNYOUNG

Composite nanoparticle for sensitizing tumor radiotherapy and preparation method and application of composite nanoparticle

The invention discloses a composite nanoparticle for sensitizing tumor radiotherapy and a preparation method and application of the composite nanoparticle. The composite nanoparticle comprises proteinand bismuth selenide and manganese dioxide which grow on the protein. The preparation method comprises the steps that a manganese salt solution is added into a aqueous dispersion of bismuth selenide-protein nanoparticles, after uniform mixing is carried out, a strong alkaline solution is added, the pH value is adjusted to alkaline, a heating temperature control reaction is carried out, ultrafiltration and washing are carried out, and the composite nanoparticle is obtained. The composite nanoparticle has the advantages that the water dispersibility and biocompatibility are good, radiotherapy is sensitized by increasing the local radiation dosage through bismuth selenide and improving tumor hypoxia through manganese dioxide, and computed tomography, magnetic resonance and photoacoustic multimode imaging angiography can be achieved simultaneously; the preparation method of the composite nanoparticle is simple, convenient and practical, the condition is mild, the controllability is good,and the implementation and promotion are easy; the composite nanoparticle can achieve the integration of targeted radiotherapy sensitization, diagnosis and treatment of the tumor, and has a broad application prospect in the fields of nano-medicine, disease diagnosis, tumor treatment and the like.
Owner:HUAZHONG UNIV OF SCI & TECH

Image representation supporting the accurate positioning of an intervention device in vessel intervention procedures

A medical imaging device and a method for providing an image representation supporting inaccurate positioning of an intervention device in a vessel intervention procedure is proposed. Therein, an anatomy representation (AR) of a vessel region of interest and at least one angiogram X-ray image (RA) and a live fluoroscopy X-ray image (LI) are acquired. The following steps are performed when a radio-opaque device is fixedly arranged within the vessel region of interest: (a) registering the anatomy representation to the at least one angiogram X-ray image in order to provide an anatomy-angiogram-registration (R1); (b) processing (DP) the at least one angiogram X-ray image and the at least one live fluoroscopy X-ray image in order to identify in each of the X-ray images the radio-opaque device; (c) registering (R2) the at least one angiogram X-ray image to the at least one live fluoroscopy X-ray image based on the identified radio-opaque device in order to provide an angiogram-fluoroscopy-registration; and (d) combining the anatomy-angiogram-registration and the angiogram-fluoroscopy-registration in order to provide an anatomy-fluoroscopy-registration (GTC; RALC). Finally, an image representation resulting from the anatomy-fluoroscopy-registration showing an overlay of live images with the anatomy representation may be output thereby helping a surgeon to accurately position for example a synthetic aortic valve within an aortic root of a heart.
Owner:KONINKLJIJKE PHILIPS NV

Method and apparatus for anatomically tailored k-space sampling and recessed elliptical view ordering for bolus-enhanced 3D MR angiography

InactiveUS20030032877A1Diagnostic recording/measuringSensorsImaging qualityView ordering
Current bolus chase magnetic resonance angiography is limited by the imaging time for each station. Tailoring the density of k-space sampling along the anterior-posterior direction of the coronal station allows a substantial decrease in scan time that leads to greater contrast bolus sharing among stations and consequently a significant improvement in image quality. Fast arterial-venous transit in the carotid arteries requires accurate, reliable timing of the acquisition to the bolus transit to maximize arterial signal and minimize venous artifacts. The rising edge of the bolus is not utilized in conventional elliptical-centric view ordering because the critical k-space center must be acquired with full arterial enhancement. The invention provides a recessed elliptical-centric view ordering scheme is introduced in which the k-space center is acquired a few seconds following scan initiation. The recessed view ordering is shown to be more robust to timing errors in a patient studies.
Owner:CORNELL RES FOUNDATION INC

System and method for 2-d/3-d registration between 3-d volume and 2-d angiography

InactiveUS20120163686A1Highly accurate and robust -D/3-D alignmentConvenient registrationImage enhancementImage analysisIn planeCoronary arteries
A method for registering a 2-D DSA image to a 3-D image volume includes calculating a coarse similarity measure between a 2-D DRR of an aorta and a cardiac DSA image, and a 2-D DRR of a coronary artery and the cardiac DSA image, for a plurality of poses over a range of 2-D translations. Several DRR-pose combinations with largest similarity measures are selected as refinement candidates. The similarity measure is calculated between the refinement candidate DRRs and the DSA, for a plurality of poses over a range of 3-D translations and in-plane rotations. One or more DRR-pose combinations with largest similarity measures are selected as final candidates. The similarity measure between the final candidate DRRs the DSA are calculated for a plurality of poses over a range of 3D translations and 3D rotations, and a DRR-pose combination with a largest similarity measure is selected as a final registration result.
Owner:SIEMENS HEALTHCARE GMBH

System, method, and computer-accessible medium for virtual pancreatography

A system, method, and computer-accessible medium for using medical imaging data to screen for a cystic lesion(s) can include, for example, receiving first imaging information for an organ(s) of a one patient(s), generating second imaging information by performing a segmentation operation on the first imaging information to identify a plurality of tissue types, including a tissue type(s) indicative of the cystic lesion(s), identifying the cystic lesion(s) in the second imaging information, and applying a first classifier and a second classifier to the cystic lesion(s) to classify the cystic lesion(s) into one or more of a plurality of cystic lesion types. The first classifier can be a Random Forest classifier and the second classifier can be a convolutional neural network classifier. The convolutional neural network can include at least 6 convolutional layers, where the at least 6 convolutional layers can include a max-pooling layer(s), a dropout layer(s), and fully-connected layer(s).
Owner:THE RES FOUND OF STATE UNIV OF NEW YORK

Echo-specific k-space reordering approach to compatible dual-echo arteriovenography

ActiveUS20110213237A1Impact image qualityWithout adversely affecting scan throughputDiagnostic recording/measuringSensorsEngineeringImaging quality
A dual-echo sequence technique provided herein empowers simultaneous acquisition of both TOF MRA and BOLD MRV in a single MR acquisition. By this approach, an echo-specific K-space ordering scheme permits the adjustment of the scan parameters that are compatible for each of the MRA and MRV. The image quality in the MRA and MRV acquired by this compatible dual-echo arteriovenography (CODEA) technique is comparable to that for conventional, single-echo MRA and MRV. When the technique is integrated with MOTSA, seamless vascular connectivity is achieved in both MRA and MRV over a large area of brain anatomy. The technique will facilitate routine clinical acquisition and application of dual-echo MRA and MRV, as both MRA and MRV can be acquired with minimal impact on the image quality and without adversely affecting the scan throughput.
Owner:UNIVERSITY OF PITTSBURGH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products