Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

418 results about "Alkali metal halide" patented technology

Alkali metal halides (also known as alkali halides) are the family of inorganic compounds with the chemical formula MX, where M is an alkali metal and X is a halogen. These compounds are the often commercially significant sources of these metals and halides. The best known of these compounds is sodium chloride, table salt.

Preparation method of metal silver nanowires with adjustable length and diameter

The invention discloses a preparation method of metal silver nanowires with adjustable length and diameter. The method comprises the following steps: dissolving silver nitrate in polyhydric alcohol for preparing solution; dissolving an alkali metal halide and a reducing compound in the polyhydric alcohol for preparing the solution; mixing the two types of the solution, and fully reacting under stirring to get the mixed solution; heating the polyhydric alcohol to 120-160 DEG C, dripping into the mixed solution, keeping the temperature and reacting for 15-44 hours; and performing centrifugal separation on reaction solution after the reaction, and washing lower-layer precipitate to get the silver nanowires. According to the preparation method, inert gas does not need to be introduced for protection, the reaction temperature is low, the preparation process is simple, the yield is high, the cost is low, and the insufficiencies of complex preparation procedure, low yield, high cost and the like in the template plate, the seeding method, the traditional polyhydroxy reduction method and the like can be overcome, thereby having important significance for large-batch industrial production and actual application thereof of the silver nanowires.
Owner:UNIV OF JINAN

Alkali halide-doped perovskite light-emitting diode and fabrication method thereof

The invention relates to an alkali halide-doped perovskite light-emitting diode. The alkali halide-doped perovskite light-emitting diode comprises a substrate, a hole transmission layer, an active light-emitting layer, an electron transmission layer, an electrode modification layer and an electrode, wherein the thickness of the active light-emitting layer is 5-100 nanometers, the active light-emitting layer comprises perovskite and an alkali halide doped in the perovskite, the molecular formula of the perovskite is one or more of CsPbCl<x>Br<3-x>, CsPbBr<x>I<3-x>, MAPbCl<x>Br<3-x>, MAPbBr<x<I<3-x>, FAPbCl<x>Br<3-x> and FAPbBr<x>I<3-x>, x is equal to 0, 1, 2 or 3, and the alkali halide is one or more of LiCl, NaCl, KCl, RbCl, LiBr, NaBr, KBr, RbBr, LiI, NaI, KI and RbI. The invention also provides a fabrication method of the alkali halide-doped perovskite light-emitting diode. The fabrication method comprises the steps of forming the hole transmission layer or the electron transmissionlayer o the substrate; modifying an alkali halide-containing perovskite precursor solution used as the active light-emitting layer on the hole transmission layer of the electron transmission layer; sequentially forming the electron transmission layer, a negative electrode modification layer and a negative electrode on the active light-emitting layer or sequentially forming the hole transmission layer, a positive electrode modification layer and a positive electrode on the active light-emitting layer; and performing package.
Owner:SUZHOU UNIV

Vapor deposition apparatus and method of vapor deposition making use thereof

A vapor deposition apparatus comprises as a vaporization assembly a container in form of a boat or crucible and a support for vapor depositing phosphor or scintillator material thereupon from raw materials present in said container, wherein said boat or crucible internally comprises an assembly of two perforated covers or lids, one of which is an outer lid (also called first lid) more close to the said support and the other cover is an inner lid (also called second lid) more close to the bottom of the said crucible; and wherein perforations present in said outer lid represent a total surface exceeding the total surface of perforations present in said inner lid more close to the bottom of the said crucible and wherein in said vapor deposition apparatus the said raw materials or the bottom of the said crucible cannot be directly seen through said perforations from any point of said support; thereby providing the manufacturing of a radiation image storage phosphor layer on a support or substrate, by a vapor depositing step of raw materials of an alkali metal halide salt and a lanthanide dopant salt or a combination thereof in order to ensure vapor deposition of a binderless needle-shaped storage phosphor layer in the said vapor deposition apparatus, so that a ratio between the total surface of perforations in said inner lid more close to the bottom of crucible and the total surface of perforations in said outer lid more close to the support is not more than 1.0.
Owner:T2PHARMA GMBH

Novel imidazoline compound corrosion inhibitor and preparation method thereof

The invention provides a novel imidazoline compound corrosion inhibitor and belongs to the field of metal corrosion inhibition. The corrosion inhibitor aims at solving the problems that most oxidation film type corrosion inhibitors and precipitating film type corrosion inhibitors contain heavy metal or the phosphorus element, are large in toxicity and severely pollute the environment. The effective components of the corrosion inhibitor are formed by compounding, by mass, 10% to 30% of thiourea derivatives, 5% to 30% of alkali halide, 30% to 80% of imidazoline-ammonium-salt derivatives and 0 to 15% of urotropin. Raw materials or components of the novel imidazoline compound corrosion inhibitor prepared through the process are simple and easy to obtain and free of or low in toxicity, the characters of molecules of all the components are greatly different, the radii of the molecules of all the components are greatly different as well, and the complementary performance is high; all the components can be adsorbed to the metal surface after being compounded to form a dense monomolecular film; and the corrosion inhibitor has the beneficial effects of being good in universality, small in use amount, high in efficiency, low in toxicity, good in stability, simple in preparation process, low in cost and the like.
Owner:SHENZHEN GCD PETROLEUM ADDITIVE CO +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products