Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

102 results about "Surface micromachining" patented technology

Surface micromachining builds microstructures by deposition and etching structural layers over a substrate. This is different from Bulk micromachining, in which a silicon substrate wafer is selectively etched to produce structures.

Gap tuning for surface micromachined structures in an epitaxial reactor

A method for adjusting with high precision the width of gaps between micromachined structures or devices in an epitaxial reactor environment. Providing a partially formed micromechanical device, comprising a substrate layer, a sacrificial layer including silicon dioxide deposited or grown on the substrate and etched to create desired holes and/or trenches through to the substrate layer, and a function layer deposited on the sacrificial layer and the exposed portions of the substrate layer and then etched to define micromechanical structures or devices therein. The etching process exposes the sacrificial layer underlying the removed function layer material. Cleaning residues from the surface of the device, then epitaxially depositing a layer of gap narrowing material selectively on the surfaces of the device. The selection of deposition surfaces determined by choice of materials and the temperature and pressure of the epitaxy carrier gas. The gap narrowing epitaxial deposition continues until a desired gap width is achieved, as determined by, for example, an optical detection arrangement. Following the gap narrowing step, the micromachined structures or devices may be released from their respective underlying sacrificial layer.
Owner:ROBERT BOSCH GMBH

Multi-dimensional micro-electromechanical assemblies and method of making same

A multi-dimensional, micro-electromechanical assembly and the method of fabricating same. The invention enables an assembly of three-dimensional (3D) microelectromechanical systems (MEMS) using surface tension or shrinkage self assembly. That is, the invention provides a surface tension self assembly technique for rotating a MEMS element with a controlled amount of deformation to a selected angle out of the plane of a substrate. In accordance with the inventive method, multi-dimensional, micro-electromechanical assemblies are fabricated by providing a phase change material on at least one substantially planar structure mounted in a first orientation. A phase change is induced in the phase change material whereby the phase change material changes from a first state, in which the structure is disposed in the first orientation, to a second state, in which the structure is disposed in a second orientation. The MEMS elements may be fabricated using conventional surface micromachining techniques. In the illustrative embodiment, each MEMS element is attached to a substrate by at least one hinge which allows rotation of the MEMS element out of the plane of the substrate to a selected angle. To enable mass assembly of the MEMS elements, the MEMS elements are rotated to the selected angle using either surface tension forces of a liquid phase change material or shrinkage of a solid phase change material. In the illustrative embodiment, the phase change material is solder and the step of inducing a phase change in the phase change material includes the step up applying heat.
Owner:BRIGHT VICTOR +6

Sound surface wave measuring sensor and parameter analytical method

The invention relates to a sound surface wave measuring sensor and a parameter analytical method. The sensor comprises a piezoelectric base, an interdigital transducer and a reflector, wherein the piezoelectric base is used for inducting physical quantity to be measured; the interdigital transducer and the reflector are deposited on the upper surface of the piezoelectric base through a surface micromachining process; the interdigital transducer is used for receiving drive energy required by the operation of the sound surface wave measuring sensor through an antenna connected with the interdigital transducer and returning a radio frequency pulse echo signal through the antenna; and the reflector is used for generating the radio frequency pulse echo signal. Compared with the prior art, the invention has the following technical characteristics: the physical quantity can be detected with high precision in a wide range on the premise of ensuring certain signal intensity; the problem that the sound surface wave sensor in the prior art can only meet one index in the range and the precision of signal measurement and the range and the precision of signal measurement cannot be met simultaneously is solved; the sound surface wave measuring sensor has simple structure; and by using a certain parameter analytical method, the measured physical quantity generates a corresponding feedback signal and the problem that the physical quantity can be accurately detected by the sensor in a wide range can be solved.
Owner:李天利 +1

Manufacturing method of infrared detector based on temporary release protective layer

ActiveCN102683475APerformance impactDoes not directly affect the structureFinal product manufactureSemiconductor devicesCMOSO2 plasma
The invention discloses a surface micromachining method for a microelectromechanical system based on a temporary release protective layer and particularly relates to a manufacturing method of an uncooled infrared detector. The manufacturing method comprises the following steps of: sequentially depositing a metal layer, an amorphous silicon sacrificial layer, a first temporary release protective layer of polyimide on a CMOS (complentary metal-oxide-semiconductor transistor) silicon substrate; manufacturing a sensitive layer and a metal electrode layer in a cascading way, and imaging the sensitive layer, the electrode layer and a microbridge structure; and finally manufacturing a second temporary release protective layer. When the sacrificial layer is released, firstly XeF2 is adopted for releasing the amorphous silicon sacrificial layer, and then O2 plasma is utilized for removing the temporary release protective layers after the release is completed. According to the manufacturing method of the infrared detector provided by the invention, compared with the prior art, the adopted temporary release protective layers are completely removed in the later period of manufacturing, thus not causing any influence on the microbridge performance, and being beneficial to the reduction of process difficulty and improvement of the performance of the detector.
Owner:ZHEJIANG DALI TECH

Electromagnetic-driven miniature two-dimensional scanning mirror device

ActiveCN103399402ARealize 2D area scanningRealize two-dimensional deflection scanningOptical elementsClassical mechanicsMagnetic poles
The invention discloses an electromagnetic-driven miniature two-dimensional scanning mirror device which belongs to the technical field of micro scanning and MEMS, is manufactured by adopting bulk silicon and surface micro machining technology and is actually a miniature two-dimensional scanning mirror device with two pairs of orthogonal magnetic poles. The scanning mirror device comprises a reflecting mirror surface, an inner baseplate, an outer baseplate, a base, inner torsion beams and outer torsion beams, wherein the reflecting mirror surface is integrally arranged on the inner baseplate; the inner baseplate is connected with the outer baseplate through a pair of opposite inner torsion beams; the outer baseplate is connected with the fixed base through the pair of opposite outer torsion beams; the inner torsion beams and the outer torsion beams are orthogonal. The scanning mirror device adopts a duralumin structure for encapsulation; two groups of magnet poles and magnetic yokes are arranged inside to form an orthogonal magnetic field; input signals are led in through the side wall of the encapsulating structure; a transparent glass seal cover is arranged at the top end of the encapsulating structure. The scanning mirror device has the advantages of high actuating efficiency, large torsion force and compact structure, and can realize two-dimensional scanning at larger angle.
Owner:BEIJING INST OF NANOENERGY & NANOSYST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products