Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

46results about How to "Resolve volatile" patented technology

Catalyst for directly preparing low-carbon olefin from microspherical synthesis gas, as well as preparation method thereof

The invention relates to a catalyst for directly preparing a low-carbon olefin from a microspherical synthesis gas, and is mainly used for solving the problems that the existing co-precipitation Fischer-Tropsch catalyst preparation technology comprises the following steps: firstly co-precipitating and then pulping and spray-forming, so that the slurry is substantially a non-homogenous body dispersed by adopting a physical method, the finial catalyst finished product is uneven and the hydrocarbon products on the catalyst are widely distributed. The problems are well solved by adopting the technical scheme that the preparation method comprises the following steps: firstly precipitating a part of components, then carrying out peptization on the obtained precipitates by using the salt solution of non-precipitated components to obtain chemically evenly dispersed sol, then spray-drying the sol, and then roasting at high temperature. The preparation method can be used for industrial production for a catalyst for synthesizing the low-carbon olefin from the synthesis gas. The catalyst is applicable to but not limited to such reactors as a fluidized bed and a slurry-state bed in which catalyst grains are required to be distributed according to the certain distribution rule.
Owner:CHINA PETROLEUM & CHEM CORP +1

Fischer-Tropsch synthesis method for heavy hydrocarbon

The invention relates to a Fischer-Tropsch synthesis method for heavy hydrocarbon, mainly solving the problems that as the Fischer-Tropsch synthesis reaction is an exothermal reaction, in the prior art, when a fixed bed is used, heat is difficultly removed for reaction and the temperature is easy to run away so that a catalyst is easy to inactivate; and when a fluidized bed is used, the selectivity of the heavy hydrocarbon is low. In the Fischer-Tropsch synthesis method, a synthesized gas is taken as a raw material; and the raw material is contacted and reacted with a fluidized bed catalyst at the conditions of 0.5-10MPa of pressure, 200-600 DEG C of reaction temperature and 100-8000 h<-1> of reaction air speed, so as to generate the heavy hydrocarbon, wherein the used iron-based fluidized bed catalyst takes at least one oxide selected from Si or Al as a carrier; and an active component contains a composition having the chemical formula based on an atom ratio as follows: Fe100AaBbCcOx, wherein A is selected from at least one of alkali metals or alkaline-earth metals, B is selected from at least one of La or Ce, and C is selected from at least one of Cu or Mn. By using the technical scheme of the method, the problems can be better solved. The method can be used in industrial production of Fischer-Tropsch synthesis reaction.
Owner:CHINA PETROLEUM & CHEM CORP +1

Method and equipment for using waste gas of butadiene extraction unit

The invention relates to a method for using waste gas of a butadiene extraction unit, comprising the following steps: (1) condensation and pressurization: introducing waste gas materials from the extraction unit to a condenser, condensing the materials to liquid phases to enter a mixing tank, completely mixing the liquid phases with diluted alkane from hydrogenated products of step (2) in the mixed tank, then entering to a pump, pressurizing by the pump; and (2) hydrogenation: mixing the mixed material flow pressurized in step (1) with cycling alkane from hydrogenated products, adding hydrogen in a certain ratio and then entering a hydrogenation reactor, cooling the hydrogenated products at the outlet of the reactor to normal temperature, and dividing the cooled products into three parts,wherein one part is taken as diluted alkane to enter the mixed tank in step (1), one part is taken as cycling alkane to enter inlet of the reactor, and the rest part is served as alkane products. Thehydrogenated products in the invention can be taken as the fuels, can be returned to a cracking furnace as cracking stocks to replace parts of naphtha, and also can be taken as high-purity alkane which is sent to a downstream unit for being a raw material, thereby reaching the purposes of saving resources and improving the rate of multipurpose utilization of C4.
Owner:CHINA PETROLEUM & CHEM CORP +1

Fluidized bed Tropsch synthesis method for heavy hydrocarbons

The invention relates to a Tropsch synthesis method for heavy hydrocarbons, which mainly solves the problems that the reaction heat dissipation is difficult, temperature runaway is easily caused and the catalyst is easily inactivated when a fixed bed is used and the selectivity of the heavy hydrocarbons is low when a fluidized bed is used in the prior art because the Tropsch synthesis reaction is strong heat generating reaction. Synthesis gas is used as a raw material; under the conditions that the reaction pressure is 0.5 to 10MPa, the reaction temperature is 200 to 600 DEG C, the reaction space velocity is 100 to 8,000 per hour and the H2/CO molar ratio of the raw material gas is 0.1-5.0: 1, the raw material is contacted with a cobalt-based fluidized bed catalyst in the fluidized bed and reacted to generate the heavy hydrocarbons, wherein the heavy hydrocarbons are hydrocarbons of over C5; and in the cobalt-based fluidized bed catalyst, at least one of oxides of Si and Al or mixture of Si or Al and ZrO2 is selected as a carrier, and the active ingredient contains the following compound with chemical formula in an atomic ratio: Co100AaBbOx, wherein in the formula, A is selected from at least one of alkali metals or alkaline earth metals, and B is selected from at least one of Cr, Ni, Cu and Zn. According to the technical scheme, the problems are well solved, and the method can be used in the industrial production of fluidized bed Tropsch synthesis reaction.
Owner:CHINA PETROLEUM & CHEM CORP +1

Method for preparing didodecyl carbonate by taking oxometallate ion liquid as catalyst

The invention discloses a method for preparing didodecyl carbonate by taking an oxometallate ion liquid as a catalyst. The method comprises: adding dimethyl carbonate, laurinol and the oxometallate ion liquid catalyst into a reaction kettle in sequence; stirring and heating to 80-110 DEG C; performing a constant-temperature reaction for 1-3 hours and cooling; and performing water-washing, phase-splitting and reduced pressure distillation separation to obtain didodecyl carbonate. According to the method, the oxometallate ion liquid catalyst is high in catalytic activity, the reaction condition is mild, the highest conversion rate of dimethyl carbonate reaches 99%, and the yield of the didodecyl carbonate reaches 97%; and in addition, the oxometallate ion liquid catalyst is simple to synthesize and high in stability, can be reused after water-washing and drying treatment, and still can keep relatively high catalytic activity after being used for multiple times, so that the problems that an existing solid base catalyst is complicated in preparation and liable to lose activity are solved.
Owner:JIANGXI NORMAL UNIVERSITY

Micro spherical Fischer-Tropsch synthesis catalyst and preparation method thereof

The invention relates to a heavy hydrocarbon Fischer-Tropsch synthesis catalyst and a preparation method thereof. Since a Fischer-Tropsch synthesis reaction is a strong exothermic reaction, when a fixed bed is used, reaction heat is difficult to remove, temperature runaway is easily caused and a catalyst is easily inactivated and when a fluidized bed is used, selectivity of heavy hydrocarbon (hydrocarbons containing more than five carbon atoms) is low. By adoption fo the heavy hydrocarbon Fischer-Tropsch synthesis catalyst and the preparation method thereof, provided by the invention, all the problems in the prior art can be solved. According to the technical scheme, an iron-based fluidized bed catalyst is adopted, wherein at least one of Si and Al oxides is taken as a carrier of the catalyst and the active component of the catalyst contains a composition with the following chemical formula in atomic ratio: Fe100AaMnbCrcOx; and synthetic gas serving as raw material comes into contact with the iron-based fluidized bed catalyst in a fluidized bed to react under the conditions that the reaction pressure is 0.5-10MPa, the reaction temperature is 200-600 DEG C, reaction air speed is 100-8000 / h and ratio of H2 / CO in the raw material gas is (0.1-5.0):1, so as to generate heavy hydrocarbon. The heavy hydrocarbon Fischer-Tropsch synthesis catalyst can be applied to industrial production of fluidized bed Fischer-Tropsch synthesis reaction.
Owner:CHINA PETROLEUM & CHEM CORP +1

A kind of preparation method of transition metal modified silicalite catalyst

The invention relates to a preparation method of a transition metal modified silicon-magnesium zeolite catalyst. The preparation method comprises steps as follows: a, magnesium sulfate is added to deionized water, concentrated sulfuric acid is added, and a solution A is obtained; b, a silicon source is added to the deionized water, and a solution B is obtained; c, the solution A is slowly added to the solution B, meanwhile, a template agent is added, and a solution C is obtained; d, the solution C is stirred for 0.5 h at high speed, and obtained gel is put in a hydrothermal crystallization kettle for crystallization; e, a solution obtained after crystallization in the step d is subjected to suction filtration, a mother solution is removed, a product is dried in a drying oven at the temperature of 100 DEG C for 24 h, and raw silicon-magnesium zeolite powder is obtained; f, the raw silicon-magnesium zeolite powder is added to a metallic nitrate solution and stirred for 2 h, a co-precipitation agent is dropwise added, pH is regulated to 10, a mixture is stirred and dried in the shade, and a catalyst precursor is obtained; g, the catalyst precursor is roasted at the temperature of 500-600 DEG C. The silicon-magnesium zeolite catalyst prepared with the method has the advantages of high catalytic activity and good stability.
Owner:HEBEI UNIVERSITY OF SCIENCE AND TECHNOLOGY

A kind of method that catalytic hydrogenation prepares m-aminobenzenesulfonic acid

Belonging to the field of fine chemical industry, the invention in particular relates to a method for preparation of m-aminobenzenesulfonic acid by catalytic hydrogenation. The method includes: taking sodium m-nitrobenzene sulfonate as the raw material, adding water for dissolving, boiling the mixture by activated carbon, conducting hot filtration, adjusting the pH value of the filtrate to 7.5-8.5 by a sodium hydroxide aqueous solution, employing Pt-Ru / C as a catalyst to perform hydrogenation reduction for preparation of m-aminobenzenesulfonic acid, ending the hydrogenation reduction reaction when the hydrogen pressure no longer changes, filtering out the Pt-Ru / C catalyst at the end of the reaction, firstly washing the catalyst by ethanol, then carrying out washing recycling, with the recycled catalyst being able to be applied over 50 times and still having a conversion rate and selectivity up to 99%; and subjecting the obtained filtrate to acid precipitation to pH of 2, thus obtaining a white crystal, i.e. the target product m-aminobenzenesulfonic acid. The method provided by the invention lowers the catalyst cost, improves the utilization rate of equipment, and also overcomes the problems of pollution and energy consumption in the regeneration process of the catalyst.
Owner:中国中化股份有限公司 +1

A dual mesoporous structure ni/sio for partial oxidation of methane 2 ‑zro 2 Catalyst preparation method

The invention discloses a method for preparing a bimodal mesoporous structure Ni / SiO2-ZrO2 catalyst used for partial oxidation of methane and belongs to the technical field of the natural gas chemical industry and the coal chemical industry. The bimodal mesoporous structure Ni / SiO2-ZrO2 catalyst loaded with the active component nickel is prepared with the impregnation method, the catalyst has a large specific surface area and a large pore volume, and pore size distribution is even. The preparing method is simple, catalytic activity on partial oxidation of methane is quite high, and catalyst deactivation caused by sintering and carbon deposition can be effectively restrained. The Ni / SiO2-ZrO2 bimodal mesoporous material has two mesoporous diameters, the larger diameter can meet the requirement of diffusion of reactants and products, and the smaller diameter enables adsorption and reaction places to be available for reactants; meanwhile, pore size distribution is narrow and can be adjusted within a certain range, so that requirements of different reactions can be met, and a new way is provided for development of new industrial catalysts. The preparing method is simple, the reaction condition is mild, and industrial production is facilitated.
Owner:清创人和生态工程技术有限公司

Preparation and application of compound catalyst for preparing diphenyl carbonate

The invention relates to a catalyst for preparing diphenyl carbonate through an interesterification reaction of dimethyl carbonate and phenol and a preparation method of the catalyst. The problems oflow activity and easy loss of heterogeneous catalysts in the prior art are mainly solved. Titanium active components are confined in a nanoreactor, the catalyst is a pseudo-homogeneous heterogeneous catalyst, and comprises the nanoreactor and titanate active components. According to the technical scheme of the catalyst, the problem of catalyst loss in a reaction of synthesis of the diphenyl carbonate through interesterification of the phenol and the dimethyl carbonate is well solved, and the catalyst can be used for industrial production of the diphenyl carbonate.
Owner:CHINA PETROLEUM & CHEM CORP +1

Preparation method of hollow palladium catalyst microspheres

The invention discloses a preparation method of hollow palladium catalyst microspheres, wherein the preparation method comprises the steps: adding ethyl cellulose into diethyl ether, uniformly stirring to form a dissolving solution, then adding ammonium carbonate, continuously stirring at a constant temperature for 30-60 min, and granulating to form particles; adding ethyl silicate into absolute diethyl ether, stirring at low temperature to form silyl ether liquid, then uniformly spraying the silyl ether liquid on the surfaces of particles, and drying at constant temperature to form a first surface film; adding ethyl silicate and palladium acetate into diethyl ether, uniformly stirring to form a mixed solution, then uniformly spraying the mixed solution on the first surface film, and drying at constant temperature to obtain a second surface film; uniformly spraying the silyl ether liquid on the second surface film, and drying at constant temperature to obtain a third surface film; and then putting the particles with the third surface film into a reaction kettle, standing for 2-5 hours to obtain a prefabricated catalyst, and carrying out reduction reaction to obtain the hollow palladium catalyst. The mesoporous structure of a silica layer can effectively prevent macromolecules from entering, contact between hydrogen molecules and palladium particles is not affected, and a good catalytic effect is achieved.
Owner:浙江工业大学上虞研究院有限公司

Fluidized bed Tropsch synthesis method for heavy hydrocarbons

The invention relates to a Tropsch synthesis method for heavy hydrocarbons, which mainly solves the problems that the reaction heat dissipation is difficult, temperature runaway is easily caused and the catalyst is easily inactivated when a fixed bed is used and the selectivity of the heavy hydrocarbons is low when a fluidized bed is used in the prior art because the Tropsch synthesis reaction is strong heat generating reaction. Synthesis gas is used as a raw material; under the conditions that the reaction pressure is 0.5 to 10MPa, the reaction temperature is 200 to 600 DEG C, the reaction space velocity is 100 to 8,000 per hour and the H2 / CO molar ratio of the raw material gas is 0.1-5.0: 1, the raw material is contacted with a cobalt-based fluidized bed catalyst in the fluidized bed and reacted to generate the heavy hydrocarbons, wherein the heavy hydrocarbons are hydrocarbons of over C5; and in the cobalt-based fluidized bed catalyst, at least one of oxides of Si and Al or mixture of Si or Al and ZrO2 is selected as a carrier, and the active ingredient contains the following compound with chemical formula in an atomic ratio: Co100AaBbOx, wherein in the formula, A is selected from at least one of alkali metals or alkaline earth metals, and B is selected from at least one of Cr, Ni, Cu and Zn. According to the technical scheme, the problems are well solved, and the method can be used in the industrial production of fluidized bed Tropsch synthesis reaction.
Owner:CHINA PETROLEUM & CHEM CORP +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products