Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

49 results about "Quantum size" patented technology

Small quantum dots, such as colloidal semiconductor nanocrystals, can be as small as 2 to 10 nanometers, corresponding to 10 to 50 atoms in diameter and a total of 100 to 100,000 atoms within the quantum dot volume. Self-assembled quantum dots are typically between 10 and 50 nm in size.

Surface modification of nanocrystals using multidentate polymer ligands

InactiveUS20060088713A1Colloidal stabilityStabilizing quantum size-dependent propertyMaterial nanotechnologyPigmenting treatmentSolventComputational chemistry
The present invention provides a method of surface passivation of colloidal nanocrystalline materials using a ligand exchange process in which quantum nanoparticles of pre-selected size and shape has polymer multidentate ligands bound at the surface of the nanocrystals for stabilizing quantum size-dependent properties of nanocrystals and providing colloidal stability of the nanoparticles in solvents. The method includes preparing a colloidal dispersion of nanoparticles, preparing a suitable polymer multidentate ligand and dissolving said suitable polymer multidentate ligand in a fluid, the polymer multidentate ligand having first portions which can bind to a surface of the nanoparticles and a second portion which does not bind to the surface of the nanoparticles, and mixing the fluid containing the suitable polymer with the colloidal dispersion of nanoparticles under conditions suitable to induce binding of at least some of the first portions of the polymer multidentate ligand onto the surface of the nanoparticles, the suitable polymer multidentate ligand being selected so that the at least some of the first portions which bind to the surface to stabilize quantum size-dependent properties of the nanocrystals, and the second portion which does not bind to the surface provides colloidal stability of the nanoparticles in a desired fluid.
Owner:THE GOVERNINIG COUNCIL OF THE UNIV OF TORANTO +6

Method for preparing CsPbBr3 nanosheets with quantum size effects

The invention discloses a method for preparing CsPbBr3 nanosheets with quantum size effects. The method includes dissolving cesium carbonate in oleic acid under argon filling conditions, and stirring the cesium carbonate and the oleic acid under heating conditions until the cesium carbonate is dissolved to obtain cesium oleate precursors; adding lead bromide, long-chain ligands and short-chain ligands into octadecene under argon filling conditions, carrying out reaction at the temperature of 100-150 DEG C until the lead bromide is dissolved, heating first reaction products until the temperature of the first reaction products reaches 120-150 DEG C, then injecting the cesium oleate precursors into the first reaction products, carrying out reaction for 5-15 s, then continuing to carry out reaction at the temperature of 100-130 DEG C for 1-5 min to obtain second reaction products and centrifuging the second reaction products. The method has the advantages that the transverse sizes of the CsPbBr3 nanosheets can be assuredly regulated and controlled in the range from 100 nm to 1 micrometer while the thicknesses which are equal to the thicknesses of a few atomic layers can be guaranteed; the thicknesses which are lower than the diameters of Bohr excitons can be kept, and accordingly the quantum size effects of the CsPbBr3 nanosheets can be reserved.
Owner:XI AN JIAOTONG UNIV

Perovskite type solar energy battery with quantum dot size performing gradient change and preparation method

The invention discloses a perovskite type solar energy battery with a quantum dot size performing gradient change and a preparation method. The perovskite type solar energy battery consists of a transparent conductive substrate, a compact electronic transmission layer, a composite light-absorption layer and a metal electrode layer; the composite light-absorption layer consists of n layers of perovskite-wrapping P type semiconductor quantum dot core shell structures, the sizes of which can perform V type gradient changing. Because the light-absorption layer of the perovskite type solar energy battery adopts multiple layers of perovskite-wrapping P type semiconductor quantum point core shell structures with the quantum sizes performing V type gradient change, the invention can realize the fact that the composite material presents gradient distribution of the forbidden bandwidth on the vertical gradient through designing the quantum dot size V type form distribution, and expands the spectrum scope of the absorption layer. Besides, the invention can improve the interface electric field on the photocathode interface, promotes the separation of the photo-induced carrier under the electric field and improves the conversion efficiency of the photoelectron.
Owner:ANHUI HUASUN ENERGY CO LTD

Method for preparing nanometer titanate with controllable appearances by utilizing industrial raw materials

The invention provides a method for preparing nanometer titanate with controllable appearances by utilizing industrial raw materials. The method comprises the following steps: utilizing industrial rawmaterials of meta-titanic acid and titanyl sulfate which are cheap as raw materials; putting and forcefully stirring the raw materials and an alkaline solution with a molar concentration of 2-11 M inan autoclave to form a uniform suspension; and putting the autoclave in environment with the temperature of 40-220 DEG C and keeping the temperature of the autoclave for longer than 3 hours. The preparation of the nanometer titanate with the controllable appearances comprises the preparation of a one-dimensional structure: a nanometer strip, i.e. a nanometer titanate strip with controllable crimpness (a tube if being fully coiled), the preparation of a two-dimensional structure: a nanometer sheet and the preparation of three-dimensional structures: a semen sterculiae lychnophorae structure, asea urchin structure and a staged micro-nano structure. The method adopts the industrial raw materials to prepare the nanometer titanate with the controllable appearances so as to have lower cost andenter industrialized production, and the nanometer titanate with the controllable appearances have various nanometer effects, such as quantum size, small size, surface effect, and the like, present more excellent physicochemical characteristics and have particularly higher application values in aspects of catalysis, adsorption, and the like than a block material.
Owner:HEFEI INSTITUTES OF PHYSICAL SCIENCE - CHINESE ACAD OF SCI

Nickel-titanium dioxide-carbon trinary nano composite catalyst and preparation method thereof

The invention discloses a preparation method of a nickel-titanium dioxide-carbon trinary nano composite catalyst. In the provided preparation method, nickel salts, titanium salts and salicylate are taken as the primary raw materials; nickel ions, titanium ions and salicyl-carboxyl functional groups can self-assemble in an aqueous solution through the coordination interaction so as to obtain a three-dimensional flower-shaped structure, namely a salicyl-intercalated layered nickel-titanium hydroxide nano composite material, and finally burning the composite material in an atmosphere of inert gas through utilizing the self-reductive property of carbon so as to obtain the catalyst. Through the preparation method, carbon-coated nickel nano particles with a quantum size can be evenly dispersed among the titanium dioxide carrier, and thus the catalytic activity and stability of the catalyst are both improved. In the liquid-phase hydrogenation reactions of nitro-phenol, the provided catalyst can convert nitro-phenol into p-aminophenol within three minutes, the catalyst efficiency of the provided catalyst is 7 times faster than that of Pt@C catalyst, after the catalyst is repeatedly used for 10 times, the conversion rate of the provided catalyst can still reach 90% or more, and the catalyst can be recovered magnetically.
Owner:BEIJING UNIV OF CHEM TECH

Transistor laser electrical and optical bistable switching

A method for electrical and optical bistable switching, including the following steps: providing a semiconductor device that includes a semiconductor base region of a first conductivity type between semiconductor collector and emitter regions of a second conductivity type, providing a quantum size region in the base region, and providing base, collector and emitter terminals respectively coupled with the base, collector, and emitter regions; providing input electrical signals with respect to the base, collector, and emitter terminals to obtain an electrical output signal and light emission from the base region; providing an optical resonant cavity that encloses at least a portion of the base region and the light emission therefrom, an optical output signal being obtained from a portion of the light in the optical resonant cavity; and modifying the input electrical signals to switch back and forth between a first state wherein the photon density in the cavity is below a predetermined threshold and the optical output is incoherent, and a second state wherein the photon density in the cavity is above the predetermined threshold and the optical output is coherent, said switching from the first to the second state being implemented by modifying the input electrical signals to reduce optical absorption by collector intra-cavity photon-assisted tunneling, and the switching from the second to the first state being implemented by modifying the input electrical signals to increase photon absorption by collector intra-cavity photon-assisted tunneling.
Owner:THE BOARD OF TRUSTEES OF THE UNIV OF ILLINOIS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products