Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

633 results about "Metal semiconductor" patented technology

Perovskite-based thin film solar cell and method for preparing same

ActiveCN103490011ASolve problems that are difficult to achieve large-scale productionLow costFinal product manufactureSolid-state devicesSemiconductor materialsPorous carbon
The invention provides a perovskite-based thin film solar cell and a method for preparing the perovskite-based thin film solar cell. The perovskite-based thin film solar cell comprises a transparent substrate, a transparent conducting layer formed on the transparent substrate, a compact layer which is formed on the transparent conducting layer and made of semiconductor materials, a porous insulating layer formed on the compact layer, a porous carbon counter electrode layer formed on the porous insulating layer, and an organic metal semiconductor light absorption material which is filled into pores inside the porous insulating layer and has a perovskite structure. The invention provides application of carbon counter electrodes in the perovskite-based thin film solar cell. Compared with an existing method for preparing the perovskite-based thin film solar cell, the method has the advantages that the counter electrodes are made of carbon materials instead of expensive precious metal materials, and therefore the cost is greatly reduced. The vacuum coating method is replaced by a simple and rapid silk screen print method which allows large-scale production to be achieved, therefore, the cost is further saved, and the achievement of industrial production of the perovskite-based thin film solar cell is facilitated.
Owner:深圳市华物光能技术有限公司

Fabrication of sub-micron etch-resistant metal/semiconductor structures using resistless electron beam lithography

A method for fabricating a sub-micron structure of etch-resistant metal / semiconductor compound on a substrate of semiconductor material comprises the step of depositing onto the substrate a layer of metal capable of reacting with the semiconductor material to form etch-resistant metal / semiconductor compound, and the step of producing a focused electron beam. The focused electron beam is applied to the layer of metal to locally heat the metal and semiconductor material and cause diffusion of the metal and semiconductor material in each other to form etch-resistant metal / semiconductor compound. The focused electron beam is displaced onto the layer of metal to form the structure of etch-resistant metal / semiconductor compound. Finally, the layer of metal is wet etched to leave on the substrate only the structure of metal / semiconductor compound. Following wet etching of the layer of metal, an oxygen plasma etch can be conducted to remove a carbon deposit formed at the surface of the structure of etch-resistant metal / semiconductor compound. Also, the substrate may be subsequently etched to remove a thin layer of metal rich semiconductor material formed at the surface of the substrate by reaction, at room temperature, of the metal and semiconductor material with each other.
Owner:SCOPRA SCI & GENIE SEC

Method for preparing titanium dioxide ultraviolet photoelectric detector

The invention discloses a method for preparing a titanium dioxide ultraviolet photoelectric detector, relates to a semiconductor photoelectric detection device, and provides a titanium dioxide ultraviolet photoelectric detector with low dark current and a preparation method thereof. The detector has a metal-semiconductor-metal structure, and comprises an insulating substrate, a polycrystal TiO2 film deposited on the insulating substrate by using magnetron sputtering technology and an interdigital metal electrode prepared on the TiO2 film by using magnetron sputtering or electron beam evaporation technology from the bottom to the top. The high-quality polycrystal TiO2 film is deposited by adopting optimized sputtering process parameters, and the deposited film has ideal chemical proportion and high compactness and crystallinity. The MSM structural ultraviolet detector prepared by using the film as a matrix has the advantages of high response degree, low dark current, high ultraviolet visible suppression ratio and the like. The preparation method has simple process and low cost; if the detector is manufactured on a Si-based substrate, the method can be compatible with the mature Si process; and the method is favorable for photoelectric integration and easy for industrialization.
Owner:XIAMEN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products