Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

235results about "Chromatisation" patented technology

Corrosion-resisting surface treatment method for stainless steel in high-corrosion environment

InactiveCN102691059AImprove electrochemical impedanceIncrease Mo element contentChromatisationElectrolytic inorganic material coatingElectrolysisMolybdate
The invention relates to a corrosion-resisting surface treatment method for stainless steel in a high-corrosion treatment. The corrosion-resisting surface treatment method is characterized by comprising a treatment link comprising a washing step, an oxidizing step, an electrolyzing step, a cleaning step and a drying step; carrying out chemical oil removal with thermokalite, and eliminating oil stains of a stainless steel part in a processing process; and carrying out total immersion oxidization passivating treatment on the stainless steel part with oxidizing solution added with molybdate, so as to generate oxide in high oxidization valence state on the surface of the stainless steel, wherein electrolyzing comprises that a metal part is taken as a cathode, the metal part is immersed into an electrolyte containing the molybdate, electrolyzing is carried out for 10 minutes at normal temperature, then washing is carried out for 3-5 times with clear water, and then the metal part is suspended and drained. Through the treatment, a protective film with the thickness of 100-700nm is generated on the surface of the stainless steel, the Cr content in the protective film reaches up to 40-50%, while the Fe content is only 10-20%, and the Mo content is doubled. The method disclosed by the invention adopts common reagents, can be completed on relatively simple equipment, consumes less time and has a simple process while the effect that the stainless steel part with excellent corrosion resistance, heat resistance and scaling resistance can be obtained is realized.
Owner:SHENZHEN CANDORTECH INC CO

Copper foil with resistance layer, method of production of the same and laminated board

InactiveUS20120111613A1Suitable elasticitySuitable plasticityChromatisationPrinted circuit aspectsElectrical resistance and conductanceAlloy
A copper foil with a resistance layer is provided, wherein the variation value is small when it is made into a resistance element, the adhesion with the resin substrate to be laminated with is able to be sufficiently maintained, which has an excellent characteristics as a resistance element for a rigid and a flexible substrate. A copper foil with a resistance layer of the present invention comprises a copper foil on one surface of which a metal layer or alloy layer is formed from which a resistance element is to be formed, the surface of the metal layer or alloy layer being subjected to a roughening treatment with nickel particles. A method of production of a copper foil with a resistance layer of the present invention comprises: forming a resistance layer of phosphorus-containing nickel on a matte surface of an electrodeposited copper foil having crystals comprised of columnar crystal grains wherein a foundation of the matte surface is within a range of 2.5 to 6.5 μm in terms of Rz value prescribed in JIS-B-0601; and performing roughening treatment to a surface of the resistance layer with nickel particles wherein a roughness is within a range of 4.5 to 8.5 μm in terms of Rz value prescribed in JIS-B-0601. The alloy layer is for example formed from phosphorus-containing nickel.
Owner:FURUKAWA ELECTRIC CO LTD

Method and system for applying superimposed time-varying frequency electromagnetic wave for corrosion protection of submerged and/or buried structures

ActiveUS20180216246A1Economical and convenient to utilizeAvoid structureAnodisationChromatisationReturn currentAcoustics
The invention relates to a method and system for preventing corrosion of at least one metallic structure in an electrolyte medium, comprising applying a superimposed time-varying frequency electromagnetic wave to the structure, the method comprising the steps of generating a superimposed time-varying frequency electromagnetic wave (DAC wave) where an AC driving signal with time-varying frequency is riding on a DC output with a predefined DC bias voltage, transmitting the DAC wave current to one or more emitters, emitting the DAC wave via the one or more emitters, placing the one or more emitters at a spaced distance from the metallic structure, subjecting the metallic structure to the DAC wave current, controlling the negative return current of the DAC wave from the metallic structure, such that the DAC wave is distributed across the structure surface and directly excites a target region of the metallic structure, and wherein the excitation induces a flow of ionic current having a DC component travelling in a pulsating and time-varying manner in the target region and effects induced vibration of electrons and molecules in the target region. The method and the system of the invention significantly reduce capital costs and require very low energy, they avoid environmentally unfriendly final products, and are able to result in effective corrosion protection of metallic structures in different surrounding conditions.
Owner:SEMB ECO R&D PTE LTD

Copper foil with resistance layer, method of production of the same and laminated board

A copper foil with a resistance layer is provided, wherein the variation value is small when it is made into a resistance element, the adhesion with the resin substrate to be laminated with is able to be sufficiently maintained, which has an excellent characteristics as a resistance element for a rigid and a flexible substrate. A copper foil with a resistance layer of the present invention comprises a copper foil on one surface of which a metal layer or alloy layer is formed from which a resistance element is to be formed, the surface of the metal layer or alloy layer being subjected to a roughening treatment with nickel particles. A method of production of a copper foil with a resistance layer of the present invention comprises: forming a resistance layer of phosphorus-containing nickel on a matte surface of an electrodeposited copper foil having crystals comprised of columnar crystal grains wherein a foundation of the matte surface is within a range of 2.5 to 6.5 [mu]m in terms of Rz value prescribed in JIS-B-0601; and performing roughening treatment to a surface of the resistance layer with nickel particles wherein a roughness is within a range of 4.5 to 8.5 [mu]m in terms of Rz value prescribed in JIS-B-0601. The alloy layer is for example formed from phosphorus-containing nickel.
Owner:FURUKAWA ELECTRIC CO LTD

Copper foil for printed wiring board, method for producing said copper foil, resin substrate for printed wiring board and printed wiring board

A copper foil for a printed wiring board, the copper foil being characterized by having, on at least one surface thereof, a roughed layer of the copper foil in which an average diameter at a particle root (D1) corresponding to a distance of 10% of a particle length from the root, is 0.2 μm to 1.0 μm, and a ratio of the particle length (L1) to the average diameter at the particle root (D1) is 15 or less when L1/D1. A copper foil for a printed wiring board, wherein a sum of area covered by holes on an uneven and roughened surface of a resin is 20% or more at a surface of the resin formed by laminating the resin and a copper foil for a printed wiring having a roughened layer and then removing the copper layer by etching. An object of the present invention is to develop a copper foil for a semiconductor package board in which the aforementioned phenomenon of circuit erosion is avoided without deteriorating other properties of the copper foil. In particular, an object of the present invention is to provide a copper foil for a printed wiring board and a producing method thereof, wherein a roughened layer of the copper foil can be improved to enhance the adhesiveness between the copper foil and a resin.
Owner:JX NIPPON MINING& METALS CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products