Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

47results about How to "High oxygen ion conductivity" patented technology

High-temperature fused salt battery

The invention relates to a high-temperature fused salt battery which comprises a positive pole, pasty dual electrolyte and a negative pole, wherein the positive pole is exposed in air, the pasty dualelectrolyte is prepared from fused salt and solid electrolyte powder by mixing, the fused salt is potassium carbonate and/or sodium carbonate, the solid electrolyte powder is zirconium oxide micron powder containing yttrium oxide, and the negative pole is separated from the positive pole by the pasty dual electrolyte. The high-temperature fused salt battery disclosed by the invention is a high-temperature fused salt battery which can be applied to large-scale power grid energy storage and is based on the fused salt and the solid electrolyte powder material. The pasty dual electrolyte disclosedby the invention can be easily prepared from the fused salt and the solid electrolyte powder through direct mixing, so that the pasty dual electrolyte has the advantages of higher oxygen ion conductivity, lower fluidity and good filling ability; furthermore, the short circuit and open circuit phenomena between the positive pole and the negative pole of the battery are effectively avoided, circular charge-discharge property of the battery is remarkably improved, and the processing manufacturing cost of the high-temperature fused salt battery is obviously reduced.
Owner:SHANGHAI INST OF APPLIED PHYSICS - CHINESE ACAD OF SCI

Preparation method of electrolyte material for medium-temperature solid fuel cell

ActiveCN108232259AGood chemical compatibility and mechanical compatibilityIncreased concentration of oxygen vacanciesFuel cellsRare-earth elementOxygen vacancy
The invention relates to a preparation method of an electrolyte material for a medium-temperature solid fuel cell, and belongs to the technical field of new energy sources. Based on the characteristics of higher oxygen ion conductivity of the cerium-oxide-doped electrolyte at a relatively low temperature as well as better chemical compatibility and mechanical matching property with a high-performance cathode material at sintering and working temperatures, the electrolyte material of the cell is formed by doping rare earth elements such as cerium, gadolinium and the like, the oxygen vacancy concentration of the cell is greatly increased, and accordingly, the ion conductivity of the cell is improved; the crystal size of the material is reduced at a lower synthesis temperature, and the sintering performance and the sintering density of the material are improved, so that the oxygen ion conduction of the electrolyte is ensured; the average crystal size of the electrolyte is reduced by compounding titanium dioxide and strontium oxide, particles of the electrolyte are homogenized, the whole electrolyte can be more densified, the ionic conductivity is improved, and the output power of thesingle cell supported by the electrolyte is further improved.
Owner:湖州达立智能设备制造有限公司

Solid oxide fuel cell

A solid oxide fuel cell provided with a power cell (1) in which a fuel electrode layer (4) is arranged on one surface of a solid electrolyte layer (3) and an air electrode layer (2) is arranged on the other surface thereof, wherein the solid electrolyte layer (3) has a two layer structure including a first electrolyte layer (3a) made of a ceria based oxide material and a second electrolyte layer (3b) made of a lanthanum gallate based oxide material, and the second electrolyte layer is formed on the side of the air electrode layer. It is preferable that the first electrolyte layer is formed thinner than the second electrolyte layer. According to such a configuration, there can be provided a solid oxide fuel cell comprising an inexpensive solid electrolyte layer which reduces the contact resistances in the interfaces between the solid electrolyte layer and the respective electrode layers, and thereby improves the generation efficiency. Additionally, by adopting a configuration in which the composition ratio of component materials in the fuel electrode layer (4) is graded along the thickness thereof, there can be provided a solid oxide fuel cell in which the generation characteristics of the power cell are improved and the durability of the solid oxide fuel cell is improved. Preferably, the material composition for the fuel electrode layer (4) is a mixture of Ni and CeSmO2, wherein the composition ratio of component materials is graded along the thickness thereof in such a way that the quantity of Ni is made less than the quantity of CeSmO2 near the boundary interface with said solid electrolyte layer, and the mixing ratio of Ni is gradually increased with an increasing distance away from the interface.
Owner:MITSUBISHI MATERIALS CORP +1

Preparation method of oxygen permeable membrane

The invention relates to a preparation method of an oxygen permeable membrane, belonging to the technical field of new materials. The invention utilizes better oxygen ion conductivity and chemical stability at high temperature of zirconia solid electrolyte with stable yttrium oxide. As that cubic perovskite structure has relatively open space inside, a larger channel is provided for oxygen ion conduction in the cubic perovskite structure, and therefore, the prepared oxygen permeable membrane has high oxygen ion conductivity; the present invention adopts phase inversion-sintering technology, aspinning solution is extruded into a wet film by a spinneret, as that wet membrane is immersed in a non-solvent, the thermodynamic state of the wet film is changed, so as to generate phase splitting to form a solid film, so as to prepare the oxygen permeable membrane with high oxygen permeability, and during the phase inversion process, because of rapid diffusion between solvent and non-solvent, afinger pore structure is formed on the inner and outer surfaces of the hollow fiber membranes and a sponge pore structure is formed on the middle layer, the sandwich structure reduces the actual working thickness of the membranes and greatly improves the oxygen permeation performance.
Owner:陈松

Oxygen production device of medical-grade high-temperature molecular sieve membrane adsorption tower and use method of oxygen production device

The invention provides an oxygen production device of a medical-grade high-temperature molecular sieve membrane adsorption tower and a use method of the oxygen production device. The oxygen production device comprises a gas source access port, an air compressor, a C-grade filter, an air storage tank, a T-grade filter, an A-grade filter, an H-grade filter, 2-4 high-temperature carbonized ceramic-based molecular sieve adsorption units, a vacuum pump, an oxygen storage tank and a nitrogen storage tank which are communicated in sequence, the vacuum pump is arranged in the high-temperature carbonized ceramic-based molecular sieve adsorption unit, the high-temperature carbonized ceramic-based molecular sieve adsorption unit is communicated with the oxygen storage tank through an oxygen diversion pipeline, and the high-temperature carbonized ceramic-based molecular sieve adsorption unit is communicated with the nitrogen storage tank through a nitrogen diversion pipeline. The oxygen production device provided by the invention is provided with the molecular sieve of the adsorption tower of the oxygen ion conductive carbonized ceramic-based molecular sieve membrane with good cyclic utilization rate, and oxygen ions are adsorbed and desorbed under high-temperature vacuum, so that oxygen and nitrogen are efficiently separated, and the oxygen production purity is improved.
Owner:HUNAN VENTMED MEDICAL TECH CO LTD

Solid oxide fuel cell

A solid oxide fuel cell provided with a power cell (1) in which a fuel electrode layer (4) is arranged on one surface of a solid electrolyte layer (3) and an air electrode layer (2) is arranged on the other surface thereof, wherein the solid electrolyte layer (3) has a two layer structure including a first electrolyte layer (3a) made of a ceria based oxide material and a second electrolyte layer (3b) made of a lanthanum gallate based oxide material, and the second electrolyte layer is formed on the side of the air electrode layer. It is preferable that the first electrolyte layer is formed thinner than the second electrolyte layer. According to such a configuration, there can be provided a solid oxide fuel cell comprising an inexpensive solid electrolyte layer which reduces the contact resistances in the interfaces between the solid electrolyte layer and the respective electrode layers, and thereby improves the generation efficiency. Additionally, by adopting a configuration in which the composition ratio of component materials in the fuel electrode layer (4) is graded along the thickness thereof, there can be provided a solid oxide fuel cell in which the generation characteristics of the power cell are improved and the durability of the solid oxide fuel cell is improved. Preferably, the material composition for the fuel electrode layer (4) is a mixture of Ni and CeSmO2, wherein the composition ratio of component materials is graded along the thickness thereof in such a way that the quantity of Ni is made less than the quantity of CeSmO2 near the boundary interface with said solid electrolyte layer, and the mixing ratio of Ni is gradually increased with an increasing distance away from the interface.
Owner:MITSUBISHI MATERIALS CORP +1

Solid oxide electrolytic cell working electrode modified by binary alloy nano-particles as well as preparation method and application of solid oxide electrolytic cell working electrode

PendingCN114657579AIncrease the rate of ammonia synthesisLower polarization resistanceElectrodesElectrochemical responseOxygen ions
The invention discloses a binary alloy nanoparticle modified solid oxide electrolytic cell working electrode as well as a preparation method and application thereof. The preparation method comprises the following steps: S1, taking oxides and carbonates of metal elements as raw materials, or directly taking perovskite oxides and pre-doped compounds as raw materials; after ball-milling and mixing, calcining at 1000-1200 DEG C, and performing high-temperature solid-phase synthesis to obtain a binary metal doped perovskite oxide; s2, preparing working electrode slurry from the binary metal doped perovskite oxide; and S3, coating an electrolyte sheet with the working electrode slurry, drying and sintering to prepare the working electrode of the solid oxide electrolytic cell, and S4, introducing a reducing atmosphere, and carrying out high-temperature treatment. The binary metal nanoparticles on the surface of the obtained electrode increase the active sites of electrochemical reaction, which is beneficial to the proceeding of the electrode reaction; the dissolution of the B-site element is beneficial to the oxygen reduction reaction on the surface of the electrode, and the oxygen ion conductivity of the electrode is improved.
Owner:SHANGHAI UNIV

Low-temperature solid oxide fuel cell cathode in a core-shell nanofiber structure and preparation method thereof by electrospinning

The invention relates to a low-temperature solid oxide fuel cell cathode in a core-shell nano fiber structure and an electrostatic spinning preparation method and belongs to the field of functional materials. The core-shell nano fiber structure cathode consists of a nano fiber core and a nano shell layer, wherein the fiber core and the shell layer respectively consist of a perovskite structure ion-electron mixed conductor component A and an oxygen ion conductor electrolyte component B or consist of opposite components; the core-shell nano fiber cathode is prepared in an electrostatic spinning manner, a component A before-spinning precursor solution and a component B before-spinning precursor solution are respectively prepared and then are respectively injected into an inner-layer spinning passage or an outer-layer spinning passage so as to carry out the spinning, and composite fibers are dried and sintered at a high temperature to obtain the core-shell nano fiber structure cathode material. By adopting the core-shell nano fiber structure, the oxygen reduction catalytic activity, anti-CO2 surface adsorption toxicity capacity and structural and performance stability of the low-temperature SOFC cathode are improved; moreover, the process is simple, and the cost is low.
Owner:DALIAN UNIV OF TECH

A high-temperature carbonized ceramic-based molecular sieve membrane oxygen generator and its application method

The invention provides a high-temperature carbonized ceramic-based molecular sieve membrane oxygen generator and a method for using the same, which include sequentially connected air source inlets, an air compressor, a C-level filter, an air storage tank, and 3-5 high-temperature carbonized ceramic-based molecular sieve membranes. Molecular sieve adsorption unit, vacuum pump, oxygen gas storage tank, nitrogen gas storage tank, the end of the oxygen gas storage tank is provided with a first check valve, and the end of the nitrogen gas storage tank is provided with a second check valve; the vacuum pump is set on a high-temperature carbonized ceramic-based molecular sieve In the adsorption unit, the high-temperature carbonized ceramic-based molecular sieve adsorption unit communicates with the oxygen storage tank through an oxygen distribution pipeline, and the high-temperature carbonized ceramic-based molecular sieve adsorption unit communicates with the nitrogen gas storage tank through a nitrogen distribution pipeline. The oxygen generating device provided by the present invention has the molecular sieve of the adsorption tower of oxygen ion conductive carbonized ceramic-based molecular sieve membrane with good recycling rate, and absorbs and desorbs oxygen ions under high temperature and vacuum to efficiently separate oxygen and nitrogen to improve the purity of oxygen production.
Owner:HUNAN VENTMED MEDICAL TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products