Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

126 results about "Metallurgical silicon" patented technology

Metallurgical-grade silicon (MSG or MG-Si) is silicon of relatively high purity in the order of 98% or higher which is used extensively in the metallurgical industry.

Preparation of hyperpure metallurgy silicon

A preparation method of ultrapure metallurgical silicon belongs to the purification technology of silicon, and the invention provides a primary purification method of a silicon material which totally contains less than 100ppma of impurities and is used for preparing solar cells. In the method, the physical metallurgical technology is used, industrial silicon powder (purity is higher than 99.5%) is taken as a raw material,, after being chemically pre-processed by acid, the silicon powder is evenly mixed with a slagging agent and put in a quartz crucible of a smelting furnace, protective gas is blown to the smelting furnace at micro-vacuum state or normal pressure; induction heating is carried out till the temperature of the smelting furnace is 1400-1700 DEG C, and the silicon metal is melted into a silicon melt; slagging is carried out to remove impurities; and finally directional solidification is carried out to obtain the ultrapure metallurgical silicon totally containing less than 100ppma of impurities. The method can remove most of metal impurity elements from silicon, especially can reduce the contents of B and P in the silicon effectively, and meet the demand of low-cost solar cells for silicon materials. The method saves equipment investment, reduces energy consumption, and has simple technology and easy operation in production.
Owner:贵阳高新阳光科技有限公司

Novel method for comprehensively treating waste mortar formed by processing photovoltaic cell crystalline silicon

The invention discloses a novel method for comprehensively treating waste mortar formed by processing photovoltaic cell crystalline silicon. Aiming to different physicochemical properties of four components of the waste mortar formed by processing photovoltaic cell crystalline silicon and under the condition of ensuring that Si micropowder is not subjected to a chemical reaction, PEG (Polyethylene Glycol) and iron are separated and recovered; SiC and Si binary sand is treated by adopting various treatment methods to obtain corresponding SiC and Si series products; the SiC and Si micropowder is hydraulically sorted or sorted by air current by utilizing the granularity difference and the density difference of the SiC micropowder and the Si micropowder in the binary sand to obtain SiC micropowder and Si miropowder; the Si miropowder is washed and purified with purified water and reagent-grade inorganic acid to obtain high-purity Si miropowder; the sorted Si miropowder is fed into an electrical furnace for melting and recasting to obtain a silicon cast ingot material; the binary sand is fed into the furnace for melting and recasting to obtain a metallurgical silicon cast ingot material and a Si and SiC mixed cast ingot material; a proper amount of carbon is fed into the binary sand to react and generate SiC; and SiC, Si and Fe ternary sand is fed into the electrical furnace for melting and recasting to obtain a silicoferrite material for metallurgy.
Owner:尹克胜

Method of high purity silane preparation

A process for the preparation of high purity silane, suitable for forming thin layer silicon structures in various semiconductor devices and high purity poly- and single crystal silicon for a variety of applications, is provided. Synthesis of high-purity silane starts with a temperature assisted reaction of metallurgical silicon with alcohol in the presence of a catalyst. Alcoxysilanes formed in the silicon-alcohol reaction are separated from other products and purified. Simultaneous reduction and oxidation of alcoxysilanes produces gaseous silane and liquid secondary products, including, active part of a catalyst, tetra-alcoxysilanes, and impurity compounds having silicon-hydrogen bonds. Silane is purified by an impurity adsorption technique. Unreacted alcohol is extracted and returned to the reaction with silicon. Concentrated mixture of alcoxysilanes undergoes simultaneous oxidation and reduction in the presence of a catalyst at the temperature -20 DEG C. to +40 DEG C. during 1 to 50 hours. Tetra-alcoxysilane extracted from liquid products of simultaneous oxidation and reduction reaction is directed to a complete hydrolysis. Complete hydrolysis of tetra-alcoxysilane results in formation of industrial silica sol and alcohol. Alcohol is dehydrated by tetra-alcoxysilane and returned to the reaction with silicon.
Owner:ALLIANCE FOR SUSTAINABLE ENERGY

Diffusion technology for reducing dark current of metallurgical silicon solar battery

The invention discloses a diffusion technology for reducing dark current of a metallurgical silicon solar battery, which includes the steps of firstly, carrying out concentrated phosphorus diffusion at the low temperature: feeding from a high-concentration phosphorus source for diffusion at the low temperature so as to form high-concentration phosphor doping; secondly, performing phosphorus gettering for a long time at the high temperature: releasing impurities such as deposited impurities, displacement impurities or other impurity complexes of iron, carbon, boron, oxygen and the like into interstitial impurities at the high temperature, so that the interstitial impurities quickly release into a phosphorosilicate glass layer with high solid solubility, high-temperature phosphorus gettering is completed, and the minority carrier lifetime of a body is prolonged; and thirdly, propelling at the lower temperature: at the lower temperature, propelling the junction depth, adjusting to square resistance meeting technological requirements, and lowering the solid solubility of the impurities in a surface concentrated area along with the temperature, so that the interstitial impurities turn to the deposited impurities, the complex impurities and the like. A metallurgical crystal silicon wafer is diffused by means of the diffusion technology, so that the dark current of the solar battery can be effectively reduced, and the conversion efficiency of the solar battery is improved.
Owner:HEFEI & SOLAR TECH

Method for purifying polysilicon through silicon alloy slagging

The invention belongs to the technical field of metallurgical purification, and particularly relates to a polysilicon purification method. The method comprises the following steps: performing alloying smelting on metal and metallurgical silicon to obtain a silicon alloy; adding basic slagging agent into the silicon alloy used as a raw material, slagging, smelting, and purifying; and finally, keeping the temperature of the melt, cooling, and separating according to density difference to obtain high-purity silicon, the slagging agent and the silicon alloy, wherein the slagging agent and the silicon alloy can be recovered and used repeatedly. By adding a small amount of metal element into the metallurgical silicon, the metal element and the silicon can be formed into the alloy melt, thus effectively lowering the smelting temperature in the slagging and purifying process and reducing the crucible loss; in the cooling process, impurities have fractional condensation effect between the silicon and the alloy melt, thus effectively lowering the boron impurity content in the primary silicon and improving the purifying effect; and finally, based on the density difference among the silicon, the alloy and the slagging agent, the three phases are separated, thus obtaining the high-purity polysilicon, ensuring that the silicon alloy and the slagging agent can be used repeatedly, and avoiding the reagent consumption and alloy element loss in the subsequent acid washing and purifying process.
Owner:DALIAN UNIV OF TECH

Method for detection and analysis of impurity content in refined metallurgical silicon

This invention discloses a method for detection and analysis of impurity content of refined metallurgical silicon, comprising: (1) select the measuring points on the crystal rods or crystal ingots along the crystallization direction, measuring the resistivity at each measuring point and acquire the measured value of resistivity according to the distribution of crystallized fraction; (2) get the estimated value of the content of boron and phosphorus at each measuring point and calculate the estimated net redundant carrier concentration and the measured value of resistivity; (3) compare the estimated value of net redundant carrier concentration with that of the measured value, and adjust the estimated value of impurity content in the silicon material to get the new estimated net redundant carrier concentration, and use regression analysis to determine the impurity content distribution of boron and phosphorus; (4) get the average impurity content of boron and phosphorus in the silicon material according to the distribution status of impurity based on all the measuring points. This invention can detect accurately the impurity contents of boron and phosphorus in refined metallurgical silicon, while the operation is simple, low-cost and suitable for industrial applications.
Owner:CSI CELLS CO LTD

Apparatus for purifying metallurgical silicon for solar cells

A system for forming high quality silicon material, e.g., polysilicon. In a specific embodiment, the melted material comprises a silicon material and an impurity, e.g., phosphorous species. The system includes a crucible having an interior region. In a specific embodiment, the crucible is made of a suitable material such as a quartz material or others. The quartz material is capable of withstanding a temperature of at least 1400 Degrees Celsius for processing silicon. In a specific embodiment, the crucible is configured in an upright position and has an open region to expose a melted material. In a specific embodiment, the present system has an energy source. Such energy source may be an arc heater or other suitable heating device, including multiple heating devices, which may be the same or different. The arc heater is configured above the open region and spaced by a gap between the exposed melted material and a muzzle region of the arc heater to cause formation of a determined temperature profile within a vicinity of a center region of the exposed melted material while maintaining outer regions of the melted material at a temperature below a melting point of the quartz material of the crucible. In a specific embodiment, the system produces a melted material comprising a resulting phosphorous species of 0.1 ppm and less, which is purified silicon.
Owner:HOSHINO MASAHIRO +1

Method for cleaning metallurgical silicon material

InactiveCN101695697ASuitable for useThe reaction electromotive force is largeCleaning using liquidsReaction rateAcid washing
The invention relates to a method for cleaning a metallurgical silicon material, which comprises the following steps: crushing a metal silicon material to below 3 centimeters; preparing acid-washing impurity removing solution, and preparing mixed acid by using hydrofluoric acid and nitric acid in a ratio of 1:12-20; soaking the crushed silicon material into the mixed acid, and stirring and cleaning the silicon material for certain time; fishing out the cleaned silicon material, cleaning the silicon material by secondary purified water, and continually turning over the silicon material; and ultrasonically cleaning the silicon material by third-grade purified water, fishing out the cleaned silicon material when the pH is equal to 7, and drying the silicon material. When the silicon material contains impurities, the electrochemical potential energy and the surface activity in an area are changed, the impurities are enriched, the reaction electromotive force of the impurities is large, the reaction rate with the acid is high, then the metal silicon material is subjected to impurity removal to a certain degree by using the principle, and the best selective corrosion effect is realized by allocating the acid matching ratio, concentration and reaction time so as to remove more impurities, realize the selective corrosion effect and meet the usage requirements of solar cells on the silicon material.
Owner:TRINA SOLAR CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products