Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3031 results about "Coal fire" patented technology

Method for cooperative activation of fly ash and decomposition of gypsum for recovery of sulfur resource

The invention provides a method for cooperative activation of fly ash and decomposition of gypsum for recovery of a sulfur resource. According to the method, solid waste, i.e., fly ash, discharged by a coal-fired power plant or coal-fired boiler is used as a raw material, a certain proportion of desulfurized gypsum discharged by the coal-fired power plant or waste phosphogypsum produced in the phosphorus chemical industry is added and mixed with the fly ash, then the obtained mixture is subjected to ball milling, and activation and calcination at a temperature of 950 to 1450 DEG C are carried out for 5 to 180 min; calcium sulfate in the gypsum are almost totally decomposed after calcination, and produced gas contains sulfur dioxide or sulfur trioxide which can be used as feed gas for preparation of sulfuric acid; and calcination enables solid fly ash to be activated, leaching with a sulfuric acid or hydrochloric acid solution is carried out at a temperature of 50 to 100 DEG C, and the leaching rate of alumina is greater than 80%. The method provided by the invention has the advantages that since all the raw materials are solid waste, the purpose of treating the waste by using the waste is achieved; elemental sulphur in the gypsum can be recovered; and the fly ash can be activated and activity of the fly ash can be improved, so a high alumina recovery rate at a low temperature can be realized. With the method, high-efficiency extraction of alumina in the fly ash is realized; the sulfur resource in the gypsum is recovered; shortage in industrial sulphur in the sulfuric acid industry in China is compensated; and the method has good economic benefits and wide industrial application prospects.
Owner:INST OF PROCESS ENG CHINESE ACAD OF SCI

Integral optimization method and system for automatic power generation system of coal-fired unit

The invention provides an integral optimization method and system for an automatic power generation system of a coal-fired unit. The method comprises the steps of carrying out control valve flow characteristic test and adjustment according to control valve flow characteristic parameters, carrying out combustion optimization on a wind and smoke subsystem and a combustion subsystem, carrying out a fuel disturbance test and a control valve disturbance test to generate typical test parameters, using the typical test parameters to generate a dynamic unit model, constructing a coordinating simulation system according to a coordinating controller and the dynamic unit model, using the dynamic unit model to optimize a feedforward controller and carry out simulation verification on the coordinating simulation system simultaneously, carrying out DCS configuration and parameter debugging in the simulation system, carrying out a constant-voltage slide-voltage variable-load test and a constant-load voltage-transformation test to generate technical indexes of the variable-load rate, the variable-load accuracy, variable-load response time and the main steam pressure accuracy, judging whether the technical indexes meet the preset technical indexes, and if on yes judgment, carrying out a slide-voltage variable-load test to enable the coal-fired unit to operate normally.
Owner:STATE GRID CORP OF CHINA +1

Solar energy and coal-burning unit combined thermal power generation system

The invention relates to a generating system, in particular to the heat generating system consisting of a solar heat collector and a coal-fired unit. The heat generating system adopts solar energy to take the place of the partial coal-fired heat energy of a coal-fired unit boiler. A condenser, an extraction pump, a low pressure heater, a deaerator, a water-feeding pump, a high pressure heater and the heat collector, a coal burning boiler and a steam turbine that are connected in parallel are connected in series. The steam turbine drives the generator and discharges gas into the condenser. Condensed water flows into a heater from the condenser to be heated up and pressurized, is deoxidized by the deaerator, then goes through the solar heat collector to be heated to be saturated vapor and goes into the coal burning boiler or directly goes into the coal burning boiler to become the steam with high temperature and high pressure. And then the steam goes into the steam turbine for applying work to drive the generator to generate electricity. The extracted steam of the steam turbine goes into each heater to finish thermodynamic cycle. The thermal efficiency of solar thermal power generation is improved, investment in the trough solar electrical energy generation of single paraboloid is reduced and the coal consumption of the coal-fired unit is decreased.
Owner:NORTH CHINA ELECTRIC POWER UNIV (BAODING)

Multi-pollutant removing technique and device of fuel coal smoke

The invention discloses a removal technology of removing coal-fired flue gas pollutants and a device thereof. The technology is as follows: an SCR denitration method is first used for removing NOX in the flue gas; then a dust collector is used for removing dusts and ash particles in the flue gas; then a wet calcium-based desulphurization method is used for removing SO2 in the flue gas; then an MEA decarburization process is used for absorbing the SO2 in the flue gas; simultaneously, a pregnant solution of a generated alkanolamine solution is heated, analyzed and regenerated and the generated barren solution of the alkanolamine solution is continuously and cyclically used; and the analyzed CO2 gas with high concentration is produced to be liquid carbon dioxide of industrial grade with high purity after being cooled, gas-liquid separated, dried, compressed and condensed. The device consists essentially of an SCR denitration reactor, the dust collector, a wet calcium-based desulphurization reactor, an MEA decarburization absorption tower, a regeneration tower, a gas-liquid separator, a dryer, a compressor, a condenser and the like which are connected with each other by pipes. The device has simple and compact overall design, low investment and operation costs, and stable and reliable work and can conduct classified integration processing and highly efficient simultaneous removal on every pollutant in the coal-fired flue gas.
Owner:WUHAN KAIDI ELECTRIC POWER ENVIRONMENTAL

Coal-based supercritical carbon dioxide Brayton cycle double-split-flow efficient power generation system

The invention discloses a coal-based supercritical carbon dioxide Brayton cycle double-split-flow efficient power generation system which comprises a low-temperature regenerator, a precooler, a main compressor, a re-compressor, a high-temperature regenerator, a boiler, a high-pressure turbine, a low-pressure turbine and an electric generator. The boiler is composed of a combustion channel, a main heat exchange channel and a tail flue in the smoke flowing direction, wherein the combustion channel, the main heat exchange channel and the tail flue are communicated in sequence; a water-cooled wall and a reheating water-cooled wall are sequentially arranged in the combustion channel in the smoke flowing direction; a high-temperature superheater and a high-temperature reheater are sequentially arranged in the main heat exchange channel in the smoke flowing direction; a baffle, a coal economizer and a low-temperature coal economizer are sequentially arranged in the tail flue in the smoke flowing direction, and a low-temperature reheater and a lower-temperature superheater are arranged on the two sides of the baffle. According to the coal-based supercritical carbon dioxide Brayton cycle double-split-flow efficient power generation system, optimal combining of the coal-fired boiler and the supercritical carbon dioxide Brayton cycle can be achieved, and the heat exchange efficiency of the high-temperature regenerator, the thermal efficiency of the boiler and the efficiency of the power generation system are high.
Owner:XIAN THERMAL POWER RES INST CO LTD

Denitration spraying ammonia automation control method and system

ActiveCN105137760AAccurate measurementChange the amount of ammonia injection in advanceDispersed particle separationAdaptive controlAir volumeFlue gas
The invention discloses a denitration spraying ammonia automation control method which is applied to a coal-fired boiler SCR system. The method comprises the following steps of acquiring a total air volume of a boiler and an entrance nitric oxide content of the system, and multiplying the total air volume of the boiler by the entrance nitric oxide content of the system so as to obtain a total nitric oxide content in a flue gas; according to the nitric oxide content, using a predetermined basic spraying ammonia amount feedforward function to obtain a basic spraying ammonia amount; according to an entrance nitric oxide content set value of the system, acquiring a correction coefficient of the predetermined basic spraying ammonia amount, multiplying the correction coefficient by the basic spraying ammonia amount so as to obtain a target spraying ammonia amount, and taking the target spraying ammonia amount as a denitration spraying ammonia amount. By using the method, a theoretical spraying ammonia amount can match an actual-needed spraying ammonia amount; a probability of excess emission of nitric oxide and an environmental protection risk brought by the excess emission can be reduced; and negative effects and economic losses brought by excessive spraying ammonia are decreased.
Owner:HUANENG PINGLIANG POWER GENERATION CO LTD

Improvement method for selective catalytic reduction flue gas denitrification and ammonia injection control system

The invention provides an improvement method for a selective catalytic reduction flue gas denitrification and ammonia injection control system. An optimal control station is introduced into an original flue gas denitrification and ammonia injection control system. In an optimal control station module, parameters affecting coal fired boiler NOx generation amount and an original PID controller output ammonia injection amount control signal, and a dynamic neural network, an output sensitivity method is utilized to construct neuron in hidden layer, through comprehensive learning of the PID controller and the introduced parameters, and according to the output amount of the PID controller and the introduced parameters affecting boiler NOx generation amount, integrated computation is carried out to form dynamic compensation control quantity. In denitrification and ammonia injection amount control logic, the original PID controller is taken as the main controller, and the dynamic neural network ammonia injection amount prediction controller is adopted as the revision controller so as to obtain the adjustment amount of optimal ammonia injection amount, thus promoting reliable and economical operation of the denitrification system.
Owner:NORTH CHINA ELECTRIC POWER UNIV (BAODING)

Coal-fired fluidized bed micro oxygen rich combustion CO2 emission reduction method and system

The invention discloses a coal-fired fluidized bed micro oxygen rich combustion CO2 emission reduction method and a coal-fired fluidized bed micro oxygen rich combustion CO2 emission reduction system for solving the problem of low-cost CO2 emission reduction of an industrialized coal-fired boiler. A micro oxygen rich combustion mode using mixed gas of air, oxygen and recycled smoke as a combustion aid is adopted, wherein the mixed gas contains about 25 percent of oxygen, 30 to 40 percent of recycled smoke and the balance of air; and in the micro oxygen rich combustion mode, the concentration of the CO2 gas in the generated smoke is 30 to 40 percent, and the CO2 in the smoke is removed by adopting a physical adsorption technology. The invention also provides a system device for implementing the method. By considering oxygen making cost, energy consumption and optimal comprehensive effect of separating CO2 by physical adsorption and combining the micro oxygen rich concept and the circulating fluidized bed combustion technology, desulfuration, denitration, decarburization and zero pollution emission at lower cost can be realized. The invention has the advantages of good economic efficiency, simple process, low energy consumption, high automation degree in operation process and the like.
Owner:NORTH CHINA ELECTRIC POWER UNIV (BAODING)

Desulfurize flue gas waste heat recovery system used in fire coal electric generating set

The invention discloses a desulfurization flue gas waste heat recovery system for a coal-fired generator set, which comprises at least a gas-water heat exchanger for exchanging heat energy between gas state and liquid state, a flue gas inlet channel and a flue gas outlet channel respectively independently communicated with the gas-water heat exchanger, and a condensation water inlet pipeline and a condensation water outlet pipeline; a flue gas inlet of the gas-water heat exchanger is communicated with a rear flue gas channel of a boiler flue gas dust remover in the coal-fired generator set; a flue gas outlet of the gas-water heat exchanger is communicated with the flue gas inlet of a desulfurization absorption tower in a desulfurization system; a condensation water inlet and a condensation water outlet of the gas-water heat exchanger can be in sereies or parallel with at least a first-stage low-pressure heater of a regenerative system. The desulfurization flue gas waste heat recovery system provided in the invention has the advantages of the high waste heat utilization ratio, saving energy and water, the obvious discharge reducing benefit and the high comprehensive utilization degree of abandoned resources.
Owner:SHANGHAI WAIGAOQIAO NO 3 POWER GENERATION
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products