Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

630 results about "Vanadium phosphate" patented technology

Vanadium phosphates are inorganic compounds with the formula VOₓPO₄ as well related hydrates with the formula VOₓPO₄(H₂O)ₙ. Some of these compounds are used commercially as catalysts for oxidation reactions.

Lithium ion battery phosphatic composite cathode material and preparation method thereof

The invention discloses a lithium ion battery phosphatic composite cathode material and a preparation method thereof. The composite material is a multinuclear core shell structure composed of a plurality of cores and a housing layer, the cores are lithium iron phosphate particles wrapped by lithium vanadium phosphate and the housing layer is amorphous carbon. Preparation of the lithium iron phosphate particles wrapped by lithium vanadium phosphate comprises the following steps: preparing precursor sol with a sol gel method, adding lithium iron phosphate powder to disperse uniformly, carrying out spray drying on the above mixture, calcining the above resultant in inert gas, and followed by cooling and grinding to obtain the lithium iron phosphate particles wrapped by lithium vanadium phosphate. Preparation of the composite cathode material comprises the following steps: dissolving a carbon source compound into deionized water, adding core materials, dispersing the above resultant uniformly, carrying out second spray drying, calcining the above resultant in inert gas, and followed by cooling to obtain the composite cathode material. The composite material prepared in the invention has good electronic conduction performance, good ionic conduction performance and excellent electrochemistry performance. Because of existence of lithium vanadium phosphate, energetic density of a material is raised. Because of the multinuclear core shell structure like nano/micro structures, the composite material has good processing performance, and tap density of the material is greatly raised.
Owner:CENT SOUTH UNIV

Preparation method of carbon coated vanadium sodium phosphate positive electrode material

A preparation method of a carbon coated vanadium sodium phosphate positive electrode material comprises the steps: with glucose as a reducing agent and a carbon source and water as a dispersant, carrying out ball milling of NH4VO3, NaH2PO4.2H2O and glucose in water, carrying out spray drying, calcining, and thus obtaining the carbon coated vanadium sodium phosphate positive electrode material. The method has the advantages of low synthesis temperature, simple steps, easily obtained raw materials, and advantageous industrialization; the obtained carbon coated vanadium sodium phosphate positive electrode material has a structure with uniform primary particles, has the particle size of 100-200 nm, and has the characteristics of short sodium ion diffusion distance, fast transmission speed, high specific surface area, high electrical conductivity and fast ion transmission and the like. The obtained carbon coated vanadium sodium phosphate positive electrode material is assembled into a battery; in a voltage scope of 2.0-3.75 V and under 1 C multiplying power, the highest first charge and discharge capacity per gram can reach 93.5 mAh*g<-1>, the capacity retention rate can be up to 97.7% after cycling for 50 circles with the 1C multiplying power, and excellent electrochemical performance is showed.
Owner:CENT SOUTH UNIV

Cathode material Li3V2(PO4)3 of lithium ion battery and its making method

The invention discloses a lithium-ion battery positive material-lithium vanadium phosphate, and the preparation method thereof, the main technical proposal is to enhance the purity of positive material and simplify the synthesizing method. The positive material in the invention is provided with a base body of lithium vanadium phosphate, carbon materials are coated outside the base body, the positive material is provided with some microscopic features like spheres, semi-spheres with the length of long axis and short axis of 5-30 micron, diamonds, cones, flakes, laminates and / or blocks, the size thereof is 5-30 micron, and the specific surface area is 5-15m2 / g. The preparation method includes preparing nano particles, liquid mixing reacting, preparing precursors, pretreament, activated roasting, coating the organic materials which can be carbonized, and then high-temperature processing. Compared with the prior art, by utilizing the nano particle secondary-molding liquid method for synthesizing the positive material-lithium vanadium phosphate, the invention simplifies operation processes and reduces production cost, with the positive material with higher charging-discharging capacity and excellent cyclical steady.
Owner:SHENZHEN CITY BATTERY NANOMETER TECH

Lithium vanadium phosphate/graphene composite material and preparation method thereof

InactiveCN102386410AGrowth inhibitionThe preparation process is simple and flexibleCell electrodesBattery cellHeat treated
The invention discloses a lithium vanadium phosphate/graphene composite material and a preparation method thereof. The lithium vanadium phosphate/graphene composite material consists of lithium vanadium phosphate and graphene or graphene and other amorphous carbon. The preparation method comprises the following steps: mixing oxidized graphite and deionized water, performing ultrasonic treatment, or further adding a reducing agent and then performing ultrasonic treatment; and adding a material or colloidal sol precursor for synthesizing lithium vanadium phosphate, water bathing at 60-90 DEG C while stirring, continuing ultrasonic treatment, drying and grinding, performing heat treatment in the presence of inert or reducing gas, and naturally cooling to room temperature to obtain the lithium vanadium phosphate/graphene composite material. The composite material prepared by using the method disclosed by the invention is used as the lithium ion battery anode material, the specific capacity of the composite material is up to 115 mAh.g<-1> in case of charging/discharging at 10C multiplying factor, and the composite material has nearly no attenuation after 500 cycles. The method has simple synthesis process and good repetitiveness, and provides an anode material with high capacity and long service life for the application of high multiplying factor lithium ion batteries.
Owner:SHANGHAI UNIV

Sodium vanadium fluorophosphate as well as low-temperature environment-friendly preparation method and use thereof

The invention belongs to the technical field of electrode materials and relates to sodium vanadium fluorophosphate as well as a low-temperature environment-friendly preparation method and use thereof. The preparation method comprises the steps of preparing a mixed water solution of a sodium source, a vanadium source, a phosphorus source and a fluorine source, reacting by virtue of the mixed water solution at 20-180 DEG C to obtain sodium vanadium fluorophosphate, wherein the vanadium source is a trivalent vanadium source and/or a tetravalent vanadium source; the chemical constitution of sodium vanadium fluorophosphate is Na3(VOxPO4)2F3-2x, and x is more than or equal to 0 and less than or equal to 1. According to the low-temperature environment-friendly preparation method, the mixed water solution of the sodium source, thephosphorus source, the fluorine source and the trivalent vanadium source and/or a tetravalent vanadium source can generate spontaneous reaction at 20-35 DEG C, the reaction can be accelerated at a temperature high than 35 DEG C and lower than 180 DEG C, and well-crystallized sodium vanadium fluorophosphate can be obtained. Sodium vanadium fluorophosphate can be used as an anode to be assembled into a battery, the specific discharge capacity is not lower than 100mAh/g, and the cycling stability is good.
Owner:INST OF PROCESS ENG CHINESE ACAD OF SCI

Doped and modified sodium vanadium fluorophosphate cathode material and preparation method thereof

The invention discloses a doped and modified sodium vanadium fluorophosphate cathode material and a preparation method thereof. According to the cathode material, the problems that an existing sodiumvanadium fluorophosphate cathode material is poor in rate capability and instable in cycle performance are solved. The nominal molecular formula of the cathode material is Na3V2-xCax(PO4)2F3, whereinx is more than 0 and less than or equal to 0.2. The preparation method comprises the following steps: uniformly dissolving a sodium source, a calcium source, a vanadium source, phosphate and a carbonsource into a deionized water medium in a stoichiometric ratio so as to obtain a mixed solution, and drying, so as to obtain a sodium vanadium fluorophosphate precursor, wherein the carbon source is used for controlling a V valence state in a compound; and carrying out thermal treatment on the precursor at 300-400 DEG C in an inert atmosphere, and sintering at 600-700 DEG C, so as to obtain the doped and modified sodium vanadium fluorophosphate cathode material. The material has relatively high ionic conductivity and electronic conductivity and therefore has excellent rate capability; the cycling stability of the material in electrochemical charging and discharging processes are enhanced; and the preparation craft process is simple.
Owner:UNIV OF SCI & TECH BEIJING

Vanadium phosphate sodium composite nano porous cathode material and method for preparing material by using freeze drying method

The invention discloses a vanadium phosphate sodium composite nano porous cathode material and a method for preparing the material by using a freeze drying method, which belong to the technical fields of a cell material and its preparation method. The method comprises the following steps: adding a certain amount of a vanadium source in a mixed solvent of deionized water and hydrogen peroxide, after stirring the materials and dissolving the materials, adding a sodium source, a phosphorus source and a carbon source with a stoichiometric ratio to form a mixing solution; then refrigerating the prepared mixing solution in liquid nitrogen to a solid, then performing vacuum drying on the material in a vacuum freeze drier; and finally putting a precursor obtained after freeze drying in mixing gas of argon and hydrogen for calcining to obtain the vanadium phosphate sodium composite nano porous cathode material. The prepared vanadium phosphate sodium composite nano porous cathode material has a three-dimensional porous structure and large specific surface area, and thereby is in favor of infiltration and transmission of an electrolyte, active sites of an electrochemical reaction are multiple, and high specific capacity and good multiplying power performance can be displayed.
Owner:ANHUI UNIVERSITY OF TECHNOLOGY

Method for preparing cathode material lithium vanadium phosphate of lithium ion battery by using fast sol-gel method

The invention discloses a method for preparing a cathode material lithium vanadium phosphate of a lithium ion battery by using a fast sol-gel method, which specifically comprises the following steps of: (1) adding vanadic oxide into the solution of a reducing acid, heating the mixed solution to 60 to 80 DEG C and stirring the mixed solution for 10 to 50 minutes at a constant temperature to obtain blue solution; (2) adding lithium salts into the blue solution, wherein a stoichiometric ratio of the lithium salts to the vanadic oxide is 3-3.2: 2.9-3.05: 0.95-1.05; (3) treating an obtained powder material in an inert atmosphere at 200 to 400 DEG C for 2 to 4 hours to obtain a precursor; and (4) mixing and grinding uniformly the obtained precursor and another carbon source and cooling the mixture to obtain the cathode material lithium vanadium phosphate of the lithium ion battery. The method has the advantages that: (1) a synthesis process is simplified, the cost is reduced and the method is applied to industrial production; (2) the baking time is greatly shortened, the granularity of the product is reduced and the synthesized material has a nano-size; and (3) the carbon source is mixed before baking, carbon granules also can prohibit the growth of material granules and the synthesized material granules are uniform and fine.
Owner:NANCHANG UNIV

Synthesis of cathode active materials

The present invention relates to a method for preparing a lithium vanadium phosphate material comprising forming a aqueous slurry (in which some of the components are at least partially dissolved) comprising a polymeric material, an acidic phosphate anion source, a lithium compound, V2O5 and a source of carbon; wet blending said slurry, spray drying said slurry to form a precursor composition; and heating said precursor composition to produce a lithium vanadium phosphate. In one embodiment the present invention relates to a method for preparing a lithium vanadium phosphate which comprises reacting vanadium pentoxide (V2O5) with phosphoric acid (H3PO4) to form a partially dissolved slurry; then mixing with an aqueous solution containing lithium hydroxide; adding a polymeric material and a source of carbon to form a slurry; wet blending said slurry; spray drying said slurry to form a precursor composition; and heating said precursor composition for a time and at a temperature sufficient to produce a lithium vanadium phosphate compound. In an alternative embodiment the present invention relates to a method for preparing a lithium vanadium phosphate which comprises preparing an aqueous solution of lithium hydroxide; partially dissolving vanadium pentoxide in said aqueous solution; adding phosphoric acid to the aqueous solution; adding a polymeric material and a source of carbon to the solution containing vanadium pentoxide to form a slurry; spray drying said slurry to form a precursor composition; and heating said precursor composition for a time and at a temperature sufficient to form a lithium vanadium phosphate. The electrochemically active lithium vanadium phosphate so produced is useful in making electrodes and batteries.
Owner:VALENCE TECH INC

Carbon-coated lithium vanadium fluorophosphate lithium ion battery positive electrode material and preparation method thereof

The invention provides a carbon-coated lithium vanadium fluorophosphate lithium ion battery positive electrode material and a preparation method thereof; the preparation method of the carbon-coated lithium vanadium fluorophosphate lithium ion battery positive electrode material comprises the following steps that a vanadium source, a phosphorus source and a carbon source are added into water to form a solution, and continuous stirring is carried out until a stable viscous solution is formed or rapid solidifying is performed; drying is performed on the viscous solution or the solid obtained in the last step, and heat treatment is performed in a non-oxidizing atmosphere, and then crushing and grinding are carried out to obtain the black carbon coated vanadium phosphate powder; mixing is carried out on the carbon-coated vanadium phosphate powder, lithium fluoride and a fluorine source to obtain precursor powder, and under the non-oxidizing atmosphere, sintering is carried out at 550-750 DEG C for 0.5-10h to obtain the carbon-coated lithium vanadium fluorophosphate material. The method is simple in process route, easy to operate, low in generating cost and capable of realizing large-scale production. The carbon-coated lithium vanadium fluorophosphate lithium ion battery positive electrode material prepared by the method is high in phase purity, uniform in particle sizes and excellent in electrochemical performance.
Owner:大连融科储能集团股份有限公司

Porous spherical carbon-coated sodium vanadium phosphate composite positive electrode material and preparation method thereof

Disclosed are a porous spherical carbon-coated sodium vanadium phosphate composite positive electrode material and a preparation method thereof. The composite positive electrode material is prepared by the steps of (1) dissolving a vanadium source compound and a reducing agent into water, performing heating and then adding a phosphorus source compound and a sodium source compound to obtain a mixedsolution; (2) adding an organic solvent, wherein the polarity of the organic solvent is greater than that of water, and putting into a sealed container to be subjected to a heating reaction, and next, performing cooling, centrifuging, washing, depositing and drying to obtain precursor powder; and (3) performing mixing with glucose, and performing sintering and cooling on the mixture in protectiveatmosphere. The positive electrode material is spherical and has the primary granular diameter of 50-200nm; when the composite positive electrode material is assembled into a battery, the initial discharge capacity per gram at 0.2C and 10C within a voltage range of 2.0-3.8V can reach 110 mAh.g<-1> and 95 mAh.g<-1> respectively; the capacity retention rate can reach 99.47% at 10C rate after 100 cycles; and the method is simple and low in reaction temperature.
Owner:CENT SOUTH UNIV

Preparation method for nano sheet-shaped lithium ion battery positive electrode material fluorine lithium vanadium phosphate

The invention provides a preparation method for a nano sheet-shaped lithium ion battery positive electrode material fluorine lithium vanadium phosphate. The preparation method comprises the following step: (1) dissolving a vanadium source, a phosphorus source and a reducing agent into water; (2) agitating in a water bath; (3) adjusting the pH to 2-12; (4) transferring the solution to a polytetrafluoroethylene tank; putting the polytetrafluoroethylene tank into a pyrolysis tank, and heating and reacting at 220-280 DEG C for 15-25 hours; cooling to a room temperature; (5) filtering and drying in vacuum; (6) arranging into an agate mortar to be grinded; then sintering under a non-oxidization atmosphere; cooling to the room temperature to obtain a crystallized-state vanadium phosphate precursor; (7) mixing the crystallized-state vanadium phosphate precursor with a lithium source and a fluorine source; uniformly grinding; and (8) arranging a mixture into a pipe type sintering furnace and sintering under the non-oxidization atmosphere; and cooling to the room temperature to obtain the nano sheet-shaped lithium ion battery positive electrode material fluorine lithium vanadium phosphate. According to the preparation method, the microcosmic appearance of the positive electrode material is in a sheet-shaped structure with the thickness being in a nano grade; the surface of a nano sheet is uniformly coated with carbon and the appearance of the material is special; the excellent electrochemical performance is represented.
Owner:CENT SOUTH UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products