A process for the conversion of a hydrocarbon selected from the group consisting of propylene, isobutylene, propane, isobutane or mixtures thereof, to acrylonitrile, methacrylonitrile, or mixtures thereof, the process comprising the step of reacting in the vapor phase at an elevated temperature and pressure said hydrocarbon with a molecular oxygen-containing gas and ammonia, in the presence of a molybdenum-based ammoxidation catalyst and a catalyst modifier, wherein said catalyst modifier comprises a molybdate or a polymolybdate of at least one element M selected from the group consisting of cesium, rubidium, potassium, sodium, thallium, lithium, nickel, cobalt, iron, chromium, copper, magnesium, manganese, cerium and phosporus, and wherein the ratio of the M elements to Mo in the molybdate or polymolybdate is greater than the ratio for these M elements to Mo in the molybdenum-based catalyst. The catalyst modifier is useful in modifying the performance of molybdenum-based catalyst and inhibiting molybdenum oxide loss for such catalysts.