Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

54 results about "Trimethylindium" patented technology

Trimethylindium (abbr: TMI or TMIn), In(CH₃)₃, (CAS #: 3385-78-2) is the preferred organometallic source of indium for metalorganic vapour phase epitaxy (MOVPE) of indium-containing compound semiconductors, such as InP, InAs, InN, InSb, GaInAs, InGaN, AlGaInP, AlInP, AlInGaNP, etc. TMI is a white, crystalline and sublimable solid, with melting point 88 °C. TMI is pyrophoric (ignites spontaneously upon contact with air), and its decomposition is often found to be uncontrollable as the temperature of its surrounding exceeds its melting point (i.e. > 88 °C) and reaches 101 °C and above. TMI is also reported to exhibit autocatalytic behavior during its thermal decomposition. TMI therefore needs to be handled with the utmost care and caution, e.g. stored in preferably cool, dry place at 0-25 °C, and operating temperatures under 50 °C in order to avoid deterioration. TMI also reacts extremely violently with oxidizers and polyhalogenated compounds (such as CCl₄ or CBrCl₃), with which TMI is therefore incompatible. Hence, mixtures of TMI with oxidizers and/or polyhalogenated compounds must be avoided as they are potentially dangerous and explosive.

Method for improving gallium nitride based transistor material and device performance using indium doping

The invention discloses a method of increasing the properties of the gallium nitride-based transistor material and device with indium doping and applies in the field of making gallium nitride-based HEMT or HFET materials and devices. The method and process is to form the gallium nitride-based high electron mobility transistor or heterostructure field effect transistor materials on SiC or Si single crystal substrate grown by metal-organic chemical vapor deposition epitaxial growth system. After the AlN or AlGaN nucleating layer and the GaN buffer layer are grown on the SiC or Si single crystal substrate, a GaN channel layer, an AlN insert layer, an AlGaN barrier layer and a GaN capped layer are grown, and trimethyl indium is added in the growth atmosphere to do epitaxial growth with indium doping. The dislocation of the material or device made by the method of the invention is reduced greatly. The invention improves the interfacial smoothness, increases the electron mobility of the material, increases the growth window, ensures the material grow easier, improves the current collapse of the device, reduces the leakage current and increases transconductance and gain and increases the output power of microwave power devices.
Owner:THE 13TH RES INST OF CHINA ELECTRONICS TECH GRP CORP

Epitaxial growth method of silicon substrate GaN-based LED

The invention provides an epitaxial growth method of a silicon substrate GaN-based LED. An LP-MOCVD system of Thomas Swan is adopted, Si (111) is selected as a substrate, TMGa, TMAl, TMIn and high-purity NH3 are respectively sources of Ga, Al, In and N, H2 and N2 are adopted as carrier gases, and SiH4 and CP2Mg are respectively n-type and p-type doping agents; the Si substrate is cleaned before growth to remove pollutants and impurities and obtain a clean surface; and an epitaxial wafer of the silicon substrate GaN-based LED is grown in an epitaxial manner, and the crystallization quality thereof is tested and analyzed by employing DCXRD. It is indicated through a result that the interface of an InGan / GaN multi-quantum well is flat, and the crystallization quality is good; and the period thicknesses of the quantum well, obtained through calculation by employing two methods, are fundamentally consistent.
Owner:FOSHAN DONGSHEN METAL PROD CO LTD

Epitaxial growth method of high-resistance GaN thin film

The invention relates to an epitaxial growth method of a high-resistance GaN thin film. The method is performed in MOCVD equipment and includes a substrate baking stage, a nucleation stage and an epitaxial growth stage. The method is characterized in that a metal organic matter trimethylindium is used as a C impurity doping source during the epitaxial growth stage. With the method adopted, the high resistance of the GaN thin film can be achieved; the TMIn is unlikely to form In-N bonds in crystal lattices under high temperature, and therefore, high growth temperature can assist in avoiding theformation of InGaN alloys and ensuring the integrity of the lattice structure of the GaN thin film; the concentration of C impurities in a GaN epitaxial layer can be effectively controlled by changing the flow rate of the dopant TMIn, and therefore, doping efficiency is high, and repeatability is stable; and a doping source pipeline is not required to be added into an MOCVD system, other C dopingsources are not required to be installed, and therefore, the resources of existing device can be fully utilized. The method is of simplicity and easy to operate. The epitaxial material has good performance. The high-quality and low-cost growth of the high-resistance GaN thin film can be realized.
Owner:NO 55 INST CHINA ELECTRONIC SCI & TECHNOLOGYGROUP CO LTD

Preparation method of InN (indium nitride) thin film through low-temperature deposition on self-supporting diamond thick film by ECR-PEMOCVD (electron cyclotron resonance-plasma enhanced metal organic chemical vapor deposition)

The invention belongs to the technical field of novel photoelectric material deposition preparation, and provides a preparation method of an InN thin film through low-temperature deposition on a self-supporting diamond thick film by the ECR-PEMOCVD, and by means of the preparation method , the InN photoelectric thin film with good electrical properties and heat dissipation performance can be prepared. The preparation method comprises the steps as follows: 1), a self-supporting diamond thick film substrate is ultrasonically cleaned by acetone, ethanol and deionized water in sequence, blow-dried by nitrogen and sent to a reaction chamber; and 2), the ECR-PEMOCVD system is adopted to vacuumize the reaction chamber, the substrate is heated in a range from 20 DEG C to 600 DEG C, then trimethylindium carried by hydrogen and nitrogen are introduced into the reaction chamber, a flow ratio of trimethylindium to nitrogen is (1-2):(100-200), total gas pressure intensity is controlled in a range from 0.8 Pa to 2.0 Pa, electron cyclotron resonance reaction is performed for 30 min-3 h, and the InN photoelectric thin film on the self-supporting diamond thick film substrate is obtained.
Owner:SHENYANG JIAYUE ELECTRIC POWER TECH CO LTD

Method for preparing InGaN/AlGaN MQW ultraviolet LED

The invention discloses a method for preparing a high-performance InGaN / AlGaN MQW ultraviolet LED. Blue ammonia, high-purity trimethylindium and high-purity trimethyl gallium serve as an N source, an In source and a Ga source respectively, and SiH4 and Cp2Mg serve as an n type doping agent and a p type doping agent respectively. The method comprises the following steps that firstly, a sapphire substrate or a SiC substrate or a Si substrate is nitrided; secondly, a buffering layer is grown and crystallized, and then a uGaN nucleating layer is grown; thirdly, a low Si-doped n-GaN layer is grown first, and then a high Si-doped n+GaN layer is grown; fourthly, an n-AlGaN layer is grown; fifthly, a Si-doped n+GaN layer is grown, and then an nGaN layer without Si is grown; sixthly, three cycles of InGaN / GaN superlattices without Al are grown, and then eight cycles of Al-doped InGaN / GaN is grown; seventhly, a PAlGaN layer is grown; eighthly, a Mg-doped P+GaN layer is grown; ninthly, a high Mg-doped P++GaN layer is grown. According to the method, InGaN / AlGaN MQW ultraviolet LED epitaxy pieces of the specific structure are grown with an LP MOCVD system, the preparing cost is low, time is saved, the prepared ultraviolet LED is good in performance, and the ultraviolet LED epitaxy industrialization is promoted.
Owner:江苏晶曌半导体有限公司

Trimethylindium low-temperature purification device and low-temperature purification method

The invention discloses a trimethylindium low-temperature purifying device, which comprises a purifying raw material kettle, a receiving tank, a vacuum protection device and a vacuum pump, wherein a solid trimethylindium material is arranged in a purifying raw material kettle; a high-purity gas carrier pipe is connected to the purifying raw material kettle; the purifying raw material kettle is connected with a receiving tank through a heat- tracing pipe; the receiving tank is connected with the vacuum protection device; the vacuum protection device is connected with a vacuum pump; and a condensing device is arranged in the receiving tank. The invention also discloses a trimethylindium low-temperature purification method. In the method, the pressure in the purifying raw material kettle is less than 50 Torr, the temperature in the purifying raw material kettle is controlled to be 30-80 DEG C, the temperature in the receiving tank is controlled to be -30 to 30 DEG C, and a high-purity carrier gas drives the trimethylindium material to enter the receiving tank, and after cooling, purified trimethylindium is obtained. The purifying method has low requirements on equipment, low equipmentcost investment and simple operation, improves the purity of the trimethylindium, and greatly improves the safety and stability of the purification process.
Owner:苏州普耀光电材料有限公司

A kind of method for preparing ingan/algan MQW violet light LED

ActiveCN106206880BLarge adjustment rangeSuitable for batch growthSemiconductor devicesUltravioletGallium
The invention discloses a method for preparing a high-performance InGaN / AlGaN MQW ultraviolet LED. Blue ammonia, high-purity trimethylindium and high-purity trimethyl gallium serve as an N source, an In source and a Ga source respectively, and SiH4 and Cp2Mg serve as an n type doping agent and a p type doping agent respectively. The method comprises the following steps that firstly, a sapphire substrate or a SiC substrate or a Si substrate is nitrided; secondly, a buffering layer is grown and crystallized, and then a uGaN nucleating layer is grown; thirdly, a low Si-doped n-GaN layer is grown first, and then a high Si-doped n+GaN layer is grown; fourthly, an n-AlGaN layer is grown; fifthly, a Si-doped n+GaN layer is grown, and then an nGaN layer without Si is grown; sixthly, three cycles of InGaN / GaN superlattices without Al are grown, and then eight cycles of Al-doped InGaN / GaN is grown; seventhly, a PAlGaN layer is grown; eighthly, a Mg-doped P+GaN layer is grown; ninthly, a high Mg-doped P++GaN layer is grown. According to the method, InGaN / AlGaN MQW ultraviolet LED epitaxy pieces of the specific structure are grown with an LP MOCVD system, the preparing cost is low, time is saved, the prepared ultraviolet LED is good in performance, and the ultraviolet LED epitaxy industrialization is promoted.
Owner:江苏晶曌半导体有限公司

Efficient purifying method of trimethylindium

The invention relates to an efficient purifying method of trimethylindium, belonging to the technical field of compound purification. The purifying method comprises the following steps of (1) pouring a crude product of trimethylindium into a first chromatographic column with a stationary phase as filler, naturally and downwards flowing the crude product of trimethylindium by virtue of gravity, and collecting a solution when all the liquid flows up; (2) pouring the collected solution into a second chromatographic column with a stationary phase as surface grafted filler, naturally and downwards flowing the solution by virtue of gravity, and collecting the solution when all the liquid flows up; then, pouring the collected solution into the second chromatographic column, and repeating the operation 2-5 times, wherein the surface grafted filler is filler of which the surface is grafted with tri-n-octylamine; and (3) heating and disassembling the second chromatographic column treated in the step (2), and collecting by vacuumizing at the bottom of the chromatographic column to obtain purified trimethylindium. The purifying method disclosed by the invention is combined with a solid-liquid separation means, and a specific coordination agent is loaded on the filler, so that not only is the method simple, but also the purifying effect is further improved.
Owner:苏州普耀光电材料有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products