Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

56 results about "Polycrystalline silicon carbide" patented technology

Radio frequency laterally diffused metal oxide semiconductor (LDMOS) device based on silicon on insulator (SOI) and method for injecting device

The invention discloses a radio frequency silicon on insulator(SOI) laterally diffused metal oxide semiconductor (LDMOS) device provided with a low potential barrier body lead-out, which comprises a bottom layer silicon, a concealed oxide layer, a top layer silicon, a P-region, a N-region, a gate oxide layer, a polysilicon gate layer, a gate polycrystalline silicon carbide layer, a gate electrode, a side wall, a N-drift region, a drain region, a drain region silicate layer, a leakage electrode, a source region, a low potential barrier body lead-out region, a body region, a source region silicide layer, and a source electrode. In the invention, the radio frequency LDMOS device is manufactured on an SOI substrate, and a low potential barrier body lead-out is in a short circuit with the source region is formed by utilizing a heavily doped region homotypic with the P- region; the source/body, leakage/ body as well as a gate is interconnected with each electrode by utilizing a silicide; a plurality of grate bars are in interdigital type parallel connection so as to enlarge the driving power of the device; and the invention provides a method for rectifying, back gate injection, N-region injection as well as N-drift region injection compatible with a complementary metal-oxide-semiconductor (CMOS) technology, as well as a N-drift region silicide conceal method compatible with the CMOS technology.
Owner:BEIJING ZHONGKE XINWEITE SCI & TECH DEV

Silicon carbide single crystal continuous growth device and growth method thereof

ActiveCN110408998AContinuous Growth GuaranteeDoes not affect growing conditionsPolycrystalline material growthFrom condensed vaporsCrucibleLarge size
The invention discloses a silicon carbide single crystal continuous growth device, the silicon carbide single crystal continuous growth device comprises a raw material bin, a growth bin and a recoverybin which are communicated in sequence, and a feeding mechanism for feeding silicon carbide polycrystalline raw materials in the raw material bin into the growth bin, the feeding mechanism is also used for feeding residues in the growth bin into the recovery bin, and the feeding mechanism sequentially passes through the raw material bin, the growth bin and the recovery bin along the feeding direction; the growth bin comprises a crucible body, a liftable crucible cover which sleeves or penetrates the upper part of the crucible body and is used for installing seed crystals on the lower surfaceof the crucible body, a driving mechanism for driving the crucible cover to lift, and a heating mechanism for heating the crucible body; and the crucible cover is positioned above the feeding mechanism. According to the silicon carbide single crystal continuous growth device, the polycrystalline silicon carbide raw materials in the crucible body can be continuously supplemented to ensure continuous growth of silicon carbide single crystals so as to obtain large-size silicon carbide single crystals; meanwhile, the transportation of the silicon carbide polycrystalline raw materials and the growth conditions of the silicon carbide single crystals are not affected.
Owner:江苏星特亮科技有限公司

Chemical vapor deposition method and device for preparing polycrystalline silicon carbide

The invention provides a chemical vapor deposition method and device for preparing polycrystalline silicon carbide, and belongs to the technical field of chemical vapor deposition. The method comprises the steps: raising the temperature of a chemical vapor deposition chamber to 400-500 DEG C within 2-4 h, and carrying out heat preservation for 4-6 h; raising the temperature to 1100-1500 DEG C within 4-10 h, and carrying out heat preservation for 1-2 h; then carrying out chemical vapor deposition, cooling to 700-800 DEG C within 30-55 h, and carrying out heat preservation for 4-6 h, and coolingto room temperature within 40-60 h, so as to ensure that the obtained silicon carbide product is complete, free of cracking, higher in purity, flatter and smoother in surface and smaller in particlesize. The deposition chamber is divided into the chemical vapor deposition chamber and a dust collection chamber by a partition plate with holes; a gas inlet of the chemical vapor deposition chamber and a gas outlet of the dust collection chamber are positioned above the holes, so airflow flows in the chamber in a Z-shaped mode, the walking path and the retention time of the airflow in the chambers are prolonged, the decomposition degree of methyl trichlorosilane is increased, the yield is increased, meanwhile, methyl trichlorosilane entering a rear-end gas outlet pipeline is reduced, pipelineblockage is avoided, and production is guaranteed to be smoothly carried out.
Owner:安徽中飞科技有限公司

Growing method for polycrystalline silicon carbide thin film

The invention provides a growing method for a polycrystalline silicon carbide thin film, and relates to silicon carbide thin films. According to the growing method for the polycrystalline silicon carbide thin film, impurities and defects inside the silicon carbide thin film can be effectively reduced and overcome, the thin film rupture phenomenon caused by large tensile stress in the thin film is avoided, and the quality of the silicon carbide thin film is significantly improved. The growing method for the polycrystalline silicon carbide thin film comprises the steps that 1, a cleaned substrate is fed into a magnetron sputtering apparatus to be sputtered; 2, after sputtering is completed, cooling is conducted, so that an amorphous silicon carbide thin film sample is formed; and 3, after annealing is conducted, the polycrystalline silicon carbide thin film is obtained. A polycrystalline silicon carbide thin film sample is prepared on the aluminum-doped zinc oxide substrate through the magnetron sputtering apparatus. The silicon carbide thin film of uniform dimensions is obtained by controlling growth parameters. The preparation process is simple, the technology is stable, the repeatability is good and toxic or hazardous gases do not need to be used; in addition, the prepared polycrystalline silicon carbide thin film is high in deposition rate and good in compactness. The growing method for the polycrystalline silicon carbide thin film can be applied to the microelectronic industry and the photovoltaic industry and has the advantages of being low in cost, easy to produce in a large scale, free of pollution and the like.
Owner:XIAMEN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products