Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

150 results about "Decarbonylation" patented technology

Decarbonylation is a type of organic reaction that involves loss of CO. It is often an undesirable reaction since it represents a degradation. In the chemistry of metal carbonyls, decarbonylation describes a substitution process, whereby a CO ligand is replaced by another ligand.

Preparation method of amide

The invention discloses a preparation method of amide. With an aldehyde derivative and a formamide derivative as a reaction substrate, iodide as catalyst and tert-butanol hydrogen peroxide as an oxidizing agent, the amide is prepared through decarbonylation double free radical cross-coupling reaction, wherein the chemical structural formula of the aldehyde derivative is shown in the description, R1 is selected from a naphthyl, a heterlcyclic ring, an alkylene or a mono-substituted aryl; and the iodide is one selected from sodium iodide, potassium iodide, cuprous iodide, lithium iodate, an iodine elementary substance, tetrabutyl ammonium iodide, tetraheptylammonium iodide, tetramethylammonium iodide and benzyltrimethylammonium iodide. According to the invention, because the amide is prepared by using the iodide as the catalyst and using the double free radical cross-coupling method, the use of the traditional metal catalyst with expensive price and larger toxicity as well as a complicated experiment method is avoided so that the reaction is simpler, more convenient, easier, safer, greener and more economic; moreover, the preparation method of the amide disclosed by the invention has the advantages of quite moderate reaction condition, simpler post-treatment and potential industrial application value.
Owner:铜陵市官作文化有限公司

Good-hydrothermal-stability hydrodeoxygenation catalyst, and preparation and application thereof

The invention relates to a good-hydrothermal-stability hydrodeoxygenation catalyst, and preparation and applications thereof. The preparation method of the catalyst comprises: mixing alumina and magnesium aluminate spinel according to a mass ratio of 1-25:1, adding molybdenum trioxide accounting for 5-50% by mass of the mixed powder and kneading to prepare a support containing molybdenum trioxide; drying the support, roasting and cooling to obtain a magnesium-aluminate-spinel-modified catalyst support; immersing the support in a nickel nitrate solution, and roasting to obtain an oxidation-state catalyst; performing precuring on the oxidation-state catalyst to obtain an activated hydrodeoxygenation catalyst used to prepare biodiesel by hydrodeoxygenation of animal and vegetable oil; and wherein the operation temperature is 350-380 DEG C, the liquid hourly space velocity is 4-6 h<-1>, the hydrogen partial pressure is 3.5-5.5 MPa, and the hydrogen-oil ratio is 200-600. The alkane yield is 81.8%, the deoxidation rate is 99.8%, and the ratio of a hydrogenation decarboxylation/decarbonylation reaction and a dehydration reaction is 1-1.5:2; and the hydrodeoxygenation catalyst has higher hydrodeoxygenation activity, stability and good hydrothermal stability.
Owner:PETROCHINA CO LTD

Method for grease to be decarbonylated into long-chain alkane under hydrogen-free condition

ActiveCN108586181AHigh efficiency decarbonylation conversionImprove decarbonylation abilityHydrocarbonsMetal/metal-oxides/metal-hydroxide catalystsAlkaneOil and grease
The invention relates to a method for grease to be decarbonylated into long-chain alkane under a hydrogen-free condition. One or more of long-chain fatty acid or / and fatty acid ester, animal and vegetable fats and oils, aqueous algal oil and waste cooking oil are used as raw materials, a carrier which contains Ca is loaded with Pt and used as a decarbonylation catalyst, carboxyls are removed though the decarbonylation, and thus the long-chain alkane is generated. The method is simple in process and high in operational safety, sources of the raw materials are wide, and the investment costs of devices and the raw materials are reduced. Green and reproducible grease is used as the raw material, and usage of fossil energy is avoided, so that the method accords with green and environmental-friendly concepts. A catalytic reaction is conducted under the hydrogen-free condition, and the carrier with Ca promotes adsorption and activation of grease molecules, so that the decarbonylation efficiency is greatly improved, and the aim of preparing the long-chain straight-chain alkane from the grease through the decarbonylation at a lower temperature under the hydrogen-free condition can be achieved.
Owner:上海科密思新能源科技有限公司

Asymmetric synthesis of chiral muskone and other 3-methyl cyclic ketone

The invention relates to asymmetric synthesis of chiral muskone and other 3-methyl cyclic ketone. The asymmetric synthesis comprises the following steps: generating a Michael addition product by taking cyclic ketene and dual-sulfonyl methane as raw materials, the chiral catalyst containing one or more functional groups of primary amine, tertiary amine, urea or thiourea or salt thereof as a catalytic system and an organic solvent as a reaction carrier and conducting reaction at 0 to 100 DEG C for 2 and 10 days; and performing carbonyl protection, selective dual-sulfonyl removal and decarbonylation protection by taking the Michael addition product as a start raw material to synthesize the chiral muskone and other 3-methyl cyclic ketone. The invention realizes high-conversion and high-selectivity synthesis of the chiral muskone and other 3-methyl cyclic ketone for the first time, ensures that the synthesized muskone has the same structure as the natural muskone and overcomes the shortcomings of small content and high price of the natural muskone; and moreover, as the reaction conditions are mild, the operation is simple and the raw materials are cheap and readily available, the invention is suitable for industrial production and application.
Owner:EAST CHINA UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products