Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

150 results about "Poly crystalline" patented technology

Answer Wiki. Polycrystalline or multicrystalline materials, or polycrystals are solids that are composed of many crystallites of varying size and orientation. Crystallites are also referred to as grains. They are small or even microscopic crystals and form during the cooling of many materials.

Methods of fabricating complex blade geometries from silicon wafers and strengthening blade geometries

Ophthalmic surgical blades are manufactured from either a single crystal or poly-crystalline material, preferably in the form of a wafer. The method comprises preparing the single crystal or poly-crystalline wafers by mounting them and etching trenches into the wafers using one of several processes. Methods for machining the trenches, which form the bevel blade surfaces, include a diamond blade saw, laser system, ultrasonic machine, a hot forge press and a router. Other processes include wet etching (isotropic and anisotropic) and dry etching (isotropic and anisotropic, including reactive ion etching), and combinations of these etching steps. The wafers are then placed in an etchant solution which isotropically etches the wafers in a uniform manner, such that layers of crystalline or poly-crystalline material are removed uniformly, producing single, double or multiple bevel blades. Nearly any angle can be machined into the wafer, and the machined angle remains after etching. The resulting radii of the blade edges is 5-500 nm, which is the same caliber as a diamond edged blade, but manufactured at a fraction of the cost. A range of radii may be 30 to 60 nm, with a specific implementation being about 40 nm. The blade profile may have an angle of, for example, about 60°. The ophthalmic surgical blades can be used for cataract and refractive surgical procedures, as well as microsurgical, biological and non-medical, non-biological purposes. Surgical and non-surgical blades and mechanical devices manufactured as described herein can also exhibit substantially smoother surfaces than metal blades.
Owner:BEAVER VISITEC INT US

Methods of fabricating complex blade geometries from silicon wafers and strengthening blade geometries

Ophthalmic surgical blades are manufactured from either a single crystal or poly-crystalline material, preferably in the form of a wafer. The method comprises preparing the single crystal or poly-crystalline wafers by mounting them and etching trenches into the wafers using one of several processes. Methods for machining the trenches, which form the bevel blade surfaces, include a diamond blade saw, laser system, ultrasonic machine, a hot forge press and a router. Other processes include wet etching (isotropic and anisotropic) and dry etching (isotropic and anisotropic, including reactive ion etching), and combinations of these etching steps. The wafers are then placed in an etchant solution which isotropically etches the wafers in a uniform manner, such that layers of crystalline or poly-crystalline material are removed uniformly, producing single, double or multiple bevel blades. Nearly any angle can be machined into the wafer, and the machined angle remains after etching. The resulting radii of the blade edges is 5-500 nm, which is the same caliber as a diamond edged blade, but manufactured at a fraction of the cost. A range of radii may be 30 to 60 nm, with a specific implementation being about 40 nm. The blade profile may have an angle of, for example, about 60°. The ophthalmic surgical blades can be used for cataract and refractive surgical procedures, as well as microsurgical, biological and non-medical, non-biological purposes. Surgical and non-surgical blades and mechanical devices manufactured as described herein can also exhibit substantially smoother surfaces than metal blades.
Owner:BEAVER VISITEC INT US

Method of forming MOS transistor having fully silicided metal gate electrode

Methods of fabricating a MOS transistor having a fully silicided metal gate electrode are provided. The method includes forming an isolation layer in a predetermined region of a semiconductor substrate to define an active region. An insulated gate pattern which crosses over the active region is formed. A spacer is formed on sidewalls of the gate pattern. A selective epitaxial growth process is applied to form semiconductor layers on the gate pattern and on the active region at both sides of the gate pattern. In this case, a poly-crystalline semiconductor layer is formed on the gate pattern while single-crystalline semiconductor layers are concurrently formed on the active region at both sides of the gate pattern. The semiconductor layers are selectively etched to form a gate-reduced pattern and elevated source and drain regions. Respective desired thicknesses of the gate-reduced pattern and the elevated source and drain regions may be obtained using an etch selectivity between the poly-crystalline semiconductor layer and the single-crystalline semiconductor layer. A silicidation process is applied to the semiconductor substrate where the gate-reduced pattern is formed to simultaneously form a fully silicided metal gate electrode and elevated source and drain silicide layers.
Owner:SAMSUNG ELECTRONICS CO LTD

Method and structure for improving phosphorus concentration uniformity of doped polycrystalline or noncrystalline silicon chips

ActiveCN104576330AAvoid the W distribution caseImprove Phosphorus Concentration UniformityDiffusion/dopingSemiconductor/solid-state device manufacturingEngineeringSilicon chip
The invention discloses a method for improving the phosphorus concentration uniformity of doped polycrystalline or noncrystalline silicon chips. According to the method, a furnace tube is adopted for growth, phosphorane is introduced through three nozzle pipelines, and the top ends of the nozzle pipelines are arranged at the bottom, the middle and the top of a crystal boat respectively; gas is emitted from the top of the first nozzle pipeline; a plurality of lateral gas outlets are formed in each of the second and third nozzle pipelines at intervals; the diameters of the lateral gas outlets of each pipeline are gradually increased in a direction from the bottom end to the top end and adjusted by testing the phosphorus concentration of the monitored silicon chips at the fixed monitoring positions of the crystal boat; the positions of the lateral gas outlets are adjusted by testing a phosphorus concentration curve along the whole crystal boat. The invention further discloses a structure for improving the phosphorus concentration uniformity of the doped polycrystalline or noncrystalline silicon chips. According to the method and the structure, the phosphorus concentration uniformity of the silicon chips can be improved and the production cost can be reduced.
Owner:SHANGHAI HUAHONG GRACE SEMICON MFG CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products