Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

300 results about "Interdigitated electrode" patented technology

Micro electro-mechanical variable capacitor

A three-dimensional micro electro-mechanical (MEMS) variable capacitor is described wherein movable comb electrodes of opposing polarity are fabricated simultaneously on the same substrate are independently actuated. These electrodes are formed in an interdigitated fashion to maximize the capacitance of the device. The electrodes are jointly or individually actuated. A separate actuation electrode and a ground plane electrode actuate the movable electrodes. The voltage potential between the two electrodes provides a primary mode of operation of the device. The variation of the sidewall overlap area between the interdigitated fingers provides the expected capacitance tuning of the device. The interdigitated electrodes can also be attached on both ends to form fixed-fixed beams. The stiffness of the electrodes is reduced by utilizing thin support structures at the ends of the electrodes. The three dimensional aspect of the device avails large surface area. Large capacitance variation and tuning ranges are obtained by independent actuation of the electrode fingers. A plurality of modes of operation of the device provides wide flexibility and greater performance advantage for the device. Upon fabrication of the device, a separate substrate with etched dielectric is used to encapsulated the device. The MEMS device is then completely encapsulated, requiring no additional packaging of the device. Further, since alignment and bonding can be done on a wafer scale, an improved device yield is obtained at a lower cost.
Owner:GLOBALFOUNDRIES INC

Piezoresistive transducer probe based on electric conduction high molecule sensitivity membrane and preparation method thereof

The invention relates to a piezoresistive sensor probe based on a conductive polymeric sensitive membrane and a preparation method thereof, pertaining to the technical field of a force sensor. The probe consists of a base, an interdigitated electrode printed on the base and the conductive polymeric sensitive membrane vulcanized on the electrode; the membrane is essentially composed of conductive carbon black as a conductive phase and single-pack room-temperature vulcanized silicone rubber as an insulation phase. The method comprises the steps that: powder of the conductive carbon black and the liquid single-pack room-temperature vulcanized silicone rubber are mixed in an ethane organic solvent; mechanical stirring is carried out in sonic oscillation, and carbon black suspending liquid with even dispersion and good liquidity is produced; a cascade spin coating method is used for coating the suspending liquid on the base provided with the interdigitated electrode to form a conductive polymeric membrane; then packaging and vulcanization are carried out, and the piezoresistive sensor probe is formed. By adopting the method of the invention, sensor probes with thin structure, good flexibility, wide measuring range and high precision can be manufactured and are especially applicable to the online monitoring of contact force and extrusion force between curved surfaces.
Owner:TSINGHUA UNIV

A freestyle miniature supercapacitor based on laser graphics and a manufacturing method thereof

A freestyle miniature supercapacitor based on laser graphics and a manufacturing method thereof belong to the technical field of micro-power energy storage. The structure is composed of a solid electrolyte, a flexible electrode and a metal current collector from the bottom up. Carbon nanotubes are dispensed on electrospun nanofibers to obtain the flexible electrode. The present invention proposes the freestyle miniature supercapacitor which uses a planar interdigitated electrode. Compared with a conventional supercapacitor in a sandwich structure, the freestyle miniature supercapacitor has a much lower device thickness, higher device flexibility, and can be better integrated with flexibly electronic devices. Meanwhile, through use of the advantages of the high specific surface area and high conductivity of the electrospun nanofibers and the carbon nanotubess, the light and stable flexible electrode is manufactured to further improve the energy and power density. Compared with other miniature supercapacitors, the freestyle miniature supercapacitor of the invention has the much lower device thickness in a novel electrolyte transfer mode without any additional substrate, and the damage which may be brought for complex transfer technology can be avoided.
Owner:PEKING UNIV

Gradient piezoelectric fiber composite material and preparation method thereof

ActiveCN105405963AGood flexibilityExcellent piezoelectric driving characteristicsPiezoelectric/electrostrictive device manufacture/assemblyFiberPliability
The invention discloses a gradient piezoelectric fiber composite material, which comprises two interdigitated electrodes, piezoelectric fibers and a high-molecular polymer, wherein the volume percent of the piezoelectric fibers is 45%-90%; and the volume percent of the high-molecular polymer is 10%-55%; the piezoelectric fibers and the high-molecular polymer are alternately arranged; and the volume fraction of the single piezoelectric fiber is in a continuous gradient change along with the transverse direction of the gradient piezoelectric fiber composite material. The gradient piezoelectric fiber composite material disclosed by the invention has high flexibility and excellent piezoelectric drive characteristic; the continuously changing drive deformation capacity can be provided in the transverse direction of the composite material; and the gradient piezoelectric fiber composite material integrates the piezoelectric fibers, the polymer and the interdigitated electrodes into a whole, and is high in integration level and convenient to operate and use. In addition, the gradient piezoelectric fiber composite material is prepared by a cutting-filling method, and is simple in process, low in cost, short in production cycle and stable in product performance.
Owner:UNIV OF JINAN
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products