Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

106 results about "Mouse Fibroblast" patented technology

Mouse Embryonic Fibroblasts (MEFs) are a type of fibroblast prepared from mouse embryo. MEFs show a spindle shape when cultured in vitro, a typical feature of fibroblasts. The MEF is a limited cell line.

Inducing method for directionally differentiating human embryonic stem cells to corneal endothelial cells

The invention discloses an inducing method for directionally differentiating human embryonic stem cells to corneal endothelial cells. The method comprises the steps of: cultivating the human embryonic stem cells on a mouse embryonic fibroblast feed layer; sorting human embryonic stem cell clone groups in good state; grafting the groups on a human corneal stromal fibroblast layer processed by mitomycin C and cultivating for 7 days, wherein the human embryonic stem cells are differentiated to rosettes; separating and transferring the rosettes from the human corneal stromal fibroblast layer to a culture bottle; cultivating continuously for 7 days by using a neural crest stem cell culture medium; sorting the neural crest stem cells by a flow cytometry; adding the neural crest stem cells into the culture bottle; placing in a 5% CO2 incubator for incubating and cultivating at 37 DEG C by using a human corneal endothelial cell culture medium; changing the liquid every other day; and cultivating for about 10 days to obtain the corneal endothelial cells. The multiplication capacity of the corneal endothelial cells are similar to that of human corneal endothelial cells and the corneal endothelial cells can be transferred to 1-2 generations in vitro maximally. The corneal endothelial cells can be used as seed cells for cornea construction and transplant in tissue engineering.
Owner:SHANDONG UNIV

Method for inducing mouse fibroblasts into cartilage by adopting small-molecule composition

The invention discloses a method for inducing mouse fibroblasts into cartilage by adopting a small-molecule composition. The method comprises the following steps: carrying out adherent culture on mouse embryo fibroblasts, removing a culture medium, slowly adding a chemical induction culture medium containing the small-molecule composition, carrying out culturing in the environment having the temperature of 37 DEG C and containing 3-8% of oxygen, 3-8 % of carbon dioxide and the balance of nitrogen, wherein the chemical induction culture medium containing the small-molecule composition is replaced every 2-3 days; carrying out continuous culturing for 4-12 days, thus obtaining intermediate state cells, wherein the small-molecule composition comprises an HDAC inhibitor, a GSK-3 inhibitor and aTGF-beta signal channel inhibitor; and transferring the intermediate state cells to a cartilage inducing medium, carrying out culturing in the environment having the temperature of 37 DEG C and containing 15-25% of oxygen, 3-8 % of carbon dioxide and the balance of nitrogen, wherein the cartilage inducing medium is replaced by the fresh cartilage inducing medium once every 3-4 days, and carryingout culturing for 14-28 days, thus obtaining a cartilage cell cluster. With the method provided by the invention, the problem that in the traditional methods, the fibroblasts can be induced to form cartilage cells through transdifferentiation only after an exogenous gene is introduced is solved, and the method provided by the invention is expected to be used for further solving the problem that seed cells of cartilage cells are in shortage or in-situ focus fibrosis exists.
Owner:ZHEJIANG UNIV

Method for preparing amniotic compound corneal limbus stem cell membrane

The invention relates to a method for preparing an amniotic compound corneal limbus stem cell membrane, which comprises the following steps of: firstly, preparing a sterile amniotic membrane with epithelium removed, placing the epithelial surface of the amniotic membrane downwards on an end face of a sleeve made of a poly propylene material, and covering an embedded culture transwell on the amniotic membrane of the sleeve to obtain an amniotic-membrane-embedded culture mold; placing the culture mold in holes in a 6-hole plate on which a mouse embryonic fibroblast cell feeder layer is spread; and finally, preparing a corneal limbus stem cell suspension by using a digestion method, inoculating the suspension on the epithelial surface of the amniotic membrane, inoculating 2.0-3.0*10<5> corneal limbus stem cells for each culture mold, and culturing the corneal limbus stem cells for 10 days to obtain the amniotic compound corneal limbus stem cell membrane. Compared with the traditional amniotic membrane spreading method and the latex ring amniotic membrane fixing method, the amniotic compound corneal limbus stem cell membrane prepared with the method has flat amniotic membrane culturing surface and uniform corneal limbus stem cell stratified layer and especially has the advantage of convenience for clinic application and difficulty in rapture of the amniotic membrane.
Owner:SHANDONG EYE INST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products