Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

415results about How to "Avoid roughness" patented technology

Production method of high-strength, high-conductivity and heat-resistant copper alloy

The invention discloses a production method of a high-strength, high-conductivity and heat-resistant copper alloy, and belongs to the technical field of copper alloy machining. Accoding to the production method of high-strength, high-conductivity and heat-resistant copper alloy, the inner liner of a crystallizer adopted in the upper-induced continuous casting process is a carbon-carbon composite material so as to ensure the lubrication, high heat conduction and high temperature resistance properties; the temperature of the upper-induced continuous casting is 1180-1230 DEG C, the casting temperature is low so that the problem that molten liquid in the crystallizer is difficult to solidify and the crystallizer inner liner is worn during casting can be effectively avoided; the pressure of protective gas nitrogen in the liquid surface of an upper-induced furnace is controlled to be 0.2-0.7 atmosphere, so that the phenomenon of solid-liquid interface separation in the crystallizer is avoided, and a copper-chromium alloy product with larger weight and length is produced; according to the production method of the high-strength, high-conductivity and heat-resistant copper alloy, the cheapelement (Mg) is used for replacing the rare noble metal, and the mechanical property and the softening resistance property of the copper-chromium alloy are improved; and the production method is a non-vacuum and short-process preparation technology, the cost is low, and the production method is suitable for large-scale industrial production and has important economic and social significances.
Owner:CENT SOUTH UNIV

Method and apparatus for performing pattern reconnection after individual or multipart alignment

A method for patterning a second layer of a work piece in a direct write machine in the manufacturing of a multilayer system-in-package stack. The work piece having a first layer with a plurality of electrical components in the form of dies arbitrarily placed. Each component having connection points where some need to be connected between the components. A first pattern wherein different zones comprising connection points of dies distributed in the first layer are associated with different requirements on alignment. The method comprising the steps of: a. Detecting sacred zones in first pattern that have a high requirement on alignment to selected features of the system-in-package stack or to the placed components; b. Detecting stretch zones of the first pattern that are allowed to have a lower requirement on alignment to other features of the system-in-package stack; c. Transforming the first pattern by calculating adjusted first pattern data comprising transformation of the original circuit pattern such that: i. connection points in adjacent sacred zones are aligned within a pre-settable alignment deviation parameter; and such that ii. deviations between the positions of corresponding connection points in the sacred zones are compensated for in the pattern for connection points of the stretch zones; d. writing a pattern on the layer of the work piece according to the adjusted pattern data. The first pattern may also be simultaneously matched to a second pattern.
Owner:MICRONIC LASER SYST AB

Method for preparing Bi high temperature superconducting line or strip material

The invention discloses a method for preparing a Bi high temperature superconducting line or strip material. The method comprises the following steps: firstly, preparing a primary composite body; secondly, drawing the primary composite body, and then annealing the drawn primary composite body so as to obtain a line material; thirdly, bundling a plurality of line materials, and then packing into a silver-base alloy pipe so as to prepare a secondary composite body; fourthly, drawing the secondary composite body, and then annealing the drawn secondary composite body so as to obtain a Bi line material; and fifthly, putting the Bi line material into an atmosphere furnace for heat treatment so as to obtain the Bi high temperature superconducting line material; or rolling the Bi line material into a Bi strip material, and then putting into the atmosphere furnace for heat treatment so as to obtain the Bi high temperature superconducting strip material. According to the method, the manufacturing dislocation quantity of silver and silver-manganese alloy is effectively controlled by adopting an unconventional annealing process, so that the phenomenon that a silver super interface is severely rough caused by an excessively soft silver sheath is effectively avoided, and the current-carrying performance of the Bi line or strip material is improved.
Owner:NORTHWEST INSTITUTE FOR NON-FERROUS METAL RESEARCH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products