Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

128 results about "Indium arsenide" patented technology

Indium arsenide, InAs, or indium monoarsenide, is a semiconductor composed of indium and arsenic. It has the appearance of grey cubic crystals with a melting point of 942 °C. Indium arsenide is used for construction of infrared detectors, for the wavelength range of 1–3.8 µm. The detectors are usually photovoltaic photodiodes. Cryogenically cooled detectors have lower noise, but InAs detectors can be used in higher-power applications at room temperature as well. Indium arsenide is also used for making of diode lasers.

Device for harmonizing a laser emission path with a passive observation path

A device for harmonizing a laser beam path with an observation path for a target includes a laser that generates a laser beam; a first optical element that directs a first part of the laser beam toward the target along the laser beam path while directing a second part of the laser beam toward a conversion device; and a second optical element that directs a converted beam from the conversion device to a sensor that receives the converted beam and an image from the target. The conversion device includes a photoluminescent material that converts the second part of the laser beam into a converted radiation having a wavelength within a spectral band of the sensor, and an optical assembly that focuses the second part of the laser beam into the photoluminescent material and that collects at least a portion of the converted radiation to form the converted beam. The photoluminescent material can include photoluminescent ions such as erbium ions, or a semiconductor material such as indium arsenide. The photoluminescent material can include two materials, wherein the first material has a photoluminescence lifetime greater than a pulse duration of the pulsed laser beam, and the second material has an emission spectrum of photoluminescence covering at least a portion of a sensitivity spectral band of the sensor. The conversion device can also include a non-linear material that frequency converts the second part of the laser beam into an intermediary radiation having a wavelength shorter than the laser beam, and where the photoluminescent material converts the intermediary radiation into the converted radiation.
Owner:THOMSON CSF SA

808nm large-power quantum well laser in non-aluminum active region of asymmetric structure

ActiveCN101340060AIncreased light confinement factorReduce leakageOptical wave guidanceLaser detailsIndium arsenideWaveguide
The invention provides an aluminum-free active region 808nm high-power quantum-well laser with asymmetric structure. From the bottom to the top, the structure of the laser sequentially comprises a substrate, a buffer layer, an N-type lower limiting layer, a lower waveguide layer, a quantum-well layer, an upper waveguide layer, a potential barrier limiting layer, a P-type upper limiting layer, a transition layer and an ohmic contact layer, wherein, the upper waveguide layer and the lower waveguide layer are made of aluminum-free material Indium gallium phosphide, the quantum-well layer made of gallium indium arsenide phosphide material, the waveguide layer and the quantum-well layer form the aluminum-free active region, and one layer potential barrier limiting layer which is made of P-type aluminum gallium indium phosphide material and 50nm-150nm thick and has a band gap wider than that of the upper limiting layer is arranged between the upper limiting layer and the upper waveguide layer. The laser of the invention can increase the optical limiting factor of the P-type material region, reduce the optical leakage towards the P-type material region, reduce optical absorption loss of a current carrier at the highly doped area, and improve the work efficiency of the laser; the structure of the invention also improves the limiting effect of the active region on the carrier, reduce the leakage of the carrier and is favorable to the decrease of the threshold current.
Owner:Shandong Huaguang Optoelectronics Co. Ltd.

Method for manufacturing active area of broadband spectrum indium arsenide/indium phosphide quantum dot laser

Disclosed is a method for manufacturing an active area of a broadband spectrum indium arsenide/indium phosphide quantum dot laser. The method for manufacturing the active area of the broadband spectrum indium arsenide/indium phosphide quantum dot laser includes following steps: step 1, selecting an indium phosphide substrate; step 2, growing an indium phosphide buffer layer on the indium phosphide substrate; step 3, growing an indium gallium arsenide phosphide thin layer with matched lattices on the indium phosphide buffer layer; step 4, preparing a polycyclic indium arsenide quantum dot active layer on the indium gallium arsenide phosphide thin layer, setting the indium gallium arsenide phosphide thin layer as a lower barrier layer of the indium arsenide quantum dot active layer; step 5, depositing an indium gallium arsenide phosphide cover layer on the indium arsenide quantum dot active layer, and setting the indium gallium arsenide phosphide cover layer as an upper barrier layer of the indium arsenide quantum dot active layer. The method for manufacturing the active area of the broadband spectrum indium arsenide/indium phosphide quantum dot laser regulates and controls the height of quantum dots by changing the thickness of the first cover layer, obtains different light wavelengths in different periods, and achieves good optical performance and luminescence spectrum larger than 300nm in width by enabling the polycyclic quantum dots to simultaneously emit light.
Owner:INST OF SEMICONDUCTORS - CHINESE ACAD OF SCI

Method for improving extended wavelength gallium indium arsenide detector etching damage

The invention discloses a method for improving extended wavelength gallium indium arsenide detector etching damage which is provided with a whole set of chip preparation etching processes. The methodincludes the steps: (1) depositing a mask etched by silicon nitride; (2) performing heat treatment in the nitrogen environment; (3) transferring table top images; (4) etching an N groove; (5) forminga table top; (6) removing etching damage. The method has the advantages that the mask etched by the silicon nitride is deposited, the heat treatment is performed in the nitrogen environment, materialdamage can be repaired, complex center density is reduced, material quality is improved, dark current of devices is reduced, hole carrier density can be increased, P-electrode ohmic contact stabilityis facilitated, resistance is reduced, a table top forming process includes gas is etched by the aid of chlorine methane, hydrogen decomposed by the methane in the plasma etching process can passivatedangling bonds formed by etching, and non-radiative recombination center density in materials is reduced. According to an etching damage removing process, damage layers of etching surfaces can be removed, the non-radiative recombination center density is reduced, subsequent passivation effects are enhanced, and the method is applicable to preparation of a high-performance short wave infrared gallium indium arsenide detector.
Owner:GUIZHOU ZHENHUA FENGGUANG SEMICON

Lattice mismatch solar cell containing novel tunneling junction and preparation method thereof

The invention discloses a lattice mismatch solar cell containing a novel tunneling junction and a preparation method thereof. A Ge monocrystal is used as a substrate, and a GaInP nucleation layer, a GaInAs buffer layer, a lattice gradient buffer layer, a first novel tunneling junction, a GaInAs sub cell, a second novel tunneling junction and a GaInP sub cell are grown on the surface of the substrate sequentially from bottom to top. The first novel tunneling junction and the second novel tunneling junction include a layer of degenerate p-type gallium indium nitrogen arsenide (Ga<1-y>In<y>N<x>As<1-x>) and a layer of degenerate n-type gallium indium arsenide (Ga<1-z>In<z>As), the lattice constants of the two layers of materials are respectively consistent with the materials of the adjacent semiconductor layers or the mismatching degree is less than 3%, and the thickness of each layer is 5-100nm. The novel tunneling junction adopted in the invention has better conductivity and light transmission than general tunneling junctions. More importantly, as a rigid material, the novel tunneling junction can filter a lot of threading dislocation and mismatch dislocation, reduce non-radiative recombination, prolong the service life of minority carriers and improve the photoelectric conversion efficiency.
Owner:ZHONGSHAN DEHUA CHIP TECH CO LTD

InGaAs (Indium Gallium Arsenide) or GaAs (Gallium Arsenide) infrared detector with wide detection bands

InactiveCN103383977ASuppress misfit dislocationsReduce surface recombinationSemiconductor devicesIndiumLattice mismatch
The invention discloses an InGaAs (Indium Gallium Arsenide) or GaAs (Gallium Arsenide) infrared detector with wide detection bands and belongs to the field of optoelectronic materials and devices. The InGaAs or GaAs infrared detector solves the problem that the performance of the existing InGaAs infrared detectors decreases obviously due to the fact that defects are produced by lattice mismatch. The InGaAs or GaAs infrared detector comprises a buffering layer, an absorbing layer and a covering layer which are grown on a GaAs substrate sequentially; the buffering layer is InAsP (Indium Arsenide Phosphorus) doped with Si (Silicon) and the thickness of the buffering layer is 0.5 to 1.5 microns; the absorbing layer is In0.82Ga0.18As with low doped Si and the thickness of the absorbing layer is 2.5 to 3.5 microns; the covering layer is InAlAs (Indium Aluminum Arsenide) doped with Be (Beryllium) and the thickness of the covering layer is 0.5 to 1.5 microns. The InGaAs or GaAs infrared detector with the wide detection bands has the structure which is high in quantum efficiency and high in detection rate and can meet the requirements of front light entering, back light entering and flip chip packaging.
Owner:CHANGCHUN INST OF OPTICS FINE MECHANICS & PHYSICS CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products