The invention provides an LED epitaxial structure which comprises a substrate, a low-temperature buffer layer, a non-doped GaN layer, an Si-doped n-type GaN layer, an InxGa(1-x)N / GaN light emitting layer, an InX / Mg3N2 super-lattice inner roughed layer, a p-type AlGaN layer and a
magnesium-doped p-type GaN layer, wherein the substrate, the low-temperature buffer layer, the non-doped GaN layer, the Si-doped n-type GaN layer, the InxGa(1-x)N / GaN light emitting layer, the InX / Mg3N2 super-lattice inner roughed layer, the p-type AlGaN layer and the
magnesium-doped p-type GaN layer are successively laminated. The InX / Mg3N2 super-lattice inner roughed layer comprises 8-10 monomers which are arranged in an overlapped manner. Each
monomer comprises an InN layer and a Mg3N2 layer. The LED epitaxial structure provided by the invention is advantageous in that the InX / Mg3N2 super-lattice inner roughed layer covers the light emitting layer; the InX / Mg3N2 material has an
advantage of low mismatch with the GaN
crystal lattice; high quality of the epitaxial layer
crystal is realized; not only is light efficiency improved, but also antistatic capability can be improved; and LED product quality is improved. As an integral technical solution, the InX / Mg3N2 super-lattice inner roughed layer has advantages of increasing number of photons extracted from the LED in light unit time, reducing number of attenuation times of the photons in the LED, and correspondingly improving light extraction strength. The invention further discloses a growing method of the LED epitaxial structure. The growing method of the LED epitaxial structure has advantages of concise steps, easy process
parameter control and convenient industrial production.