Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

69 results about "Atomic radius" patented technology

The atomic radius of a chemical element is a measure of the size of its atoms, usually the mean or typical distance from the center of the nucleus to the boundary of the surrounding shells of electrons. Since the boundary is not a well-defined physical entity, there are various non-equivalent definitions of atomic radius. Three widely used definitions of atomic radius are: Van der Waals radius, ionic radius, and covalent radius.

Ternary and multi-nary iron-based bulk glassy alloys and nanocrystalline alloys

InactiveUS20050263216A1High glass forming abilityIncreased electrical resistivityMagnetic materialsAmorphous phaseAtomic radius
Disclosed in this invention is a family of ternary and multi-nary iron-based new compositions of bulk metallic glasses which possess promising soft magnetic properties, and the composition selection rules that lead to the design of such new compositions. The embodiment alloys are represented by the formula MaXbZc, where M represents at least one of ferromagnetic elements such as iron and may partly be replaced by some other substitute elements; X is an element or combinations of elements selected from those with atomic radius at least 130% that of iron and in the mean time is able to form an M-rich eutectic; and Z is an element or combinations of elements selected from semi-metallic or non-metallic elements with atomic radius smaller than 86% that of iron and in the meantime is able to form an M-Z eutectic; a, b, c are the atomic percentage of M, X, Z, respectively, and a+b+c=100%. When 1%<b<15% and 10%<c<39%, the alloys show a bulk glass forming ability to cast amorphous ribbons/sheets at least 0.1 mm in thickness. When 3%<b<10% and 18%<c<30%, the alloys show a bulk glass forming ability to cast amorphous rods at least 1 mm in diameter. The amorphous phase of these as-cast sheets/rods is at least 95% by volume. This invention also discloses the existence of nano-crystalline phase outside of the outer regime of the bulk glass forming region mentioned above.
Owner:NATIONAL TSING HUA UNIVERSITY

High-specific-strength high-plasticity refractory high-entropy alloy and preparing method thereof

ActiveCN108677077AStrong plastic matchingHigh strengthSize differenceValence electron
The invention relates to a high-specific-strength high-plasticity refractory high-entropy alloy and a preparing method thereof, and belongs to the technical field of metal materials. The expression isVaNbbZrcTidMeNfPg, wherein M, N, P can be the elements such as Cr, Al, Ni, Fe, Si, O, B, C, and N; a is no less than 15% and no more than 20%, b is no less than 15% and no more than 25%, c is no lessthan 30% and no more than 50%, d is no more than 30% and no less than 50%, e is no less than 0 and no more than 5%, f is no less than 0 and no more than 5%, g is no less than 0 and no more than 5%, and the sum of a, b, c, d, e, f and g is 100%; and meanwhile, the valence electron concentration VEC of the alloy is no less than 4.1 and no more than 4.4, and the atomic radius size difference Delta is no less than 5.5% and no more than 6.4%. The alloy is prepared by various methods, the density of the VaNbbZrcTidMeNfPg alloy is less than 6.5 g*cm<-3>, the room temperature tensile strength is morethan 900 MPa, the plastic deformation is more than 15%, and the high specific strength and high plasticity are achieved; and after the temperature is increased to 600 DEG C, the weakening of the material is not very obvious, after the temperature is increased to 800 DEG C, the material can still maintain a certain strength, and the alloy has a certain storage ability for H2 and can be used in thefield of energy materials.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Difluoro-bithiophene polymer as well as preparation method and application thereof to FET (field effect transistor)

ActiveCN106589326AStrong electron-withdrawing propertiesGood planarityOrganic chemistrySolid-state devicesPolymer scienceElectron injection
The invention discloses a difluoro-bithiophene polymer as well as a preparation method and application thereof to an FET (field effect transistor). The structural formula of the difluoro-bithiophene polymer is as shown in formula I, wherein n is a natural number ranging from 5 to 100. According to the invention, a fluorine atom is introduced to a thiophene ring to obtain difluoro-bithiophene (2FBT); the fluorine atom has a strong electron-withdrawing property, the atomic radius is small, and the interaction with other atoms such as a hydrogen atom or a sulphur atom is relatively strong, so that the introduction of the fluorine atom can improve the molecular planarity and promote molecular stacking. A polymer taking 2FBT as a donor has relatively low LUMO energy level, and the electron injection of a transport layer is relatively easy, so that the bipolar transfer characteristic can be expressed. The difluoro-bithiophene polymer provided by the invention can be used as a semiconducting material to prepare an OFET (organic field effect transistor). The OFET prepared by taking the difluoro-bithiophene polymer as a semiconducting layer has relatively high migration rate (mu), thereby having a good application prospect in bipolar OFETs.
Owner:INST OF CHEM CHINESE ACAD OF SCI

Cu-Ni-Nb ternary alloy film with low resistivity and high chemical inertia and preparation process thereof

The invention provides a Cu-Ni-Nb ternary alloy film with low resistivity and high chemical inertia and a preparation process thereof, and belongs to the field of materials. Under the guidance of a cluster model of a stable solid solution, the selection and the addition quantity of alloying elements in the Cu film are determined, and factors such as the enthalpy of mixing, a cluster structure and atomic radius dimension are comprehensively considered, so that the solid solution alloy film with relatively high thermal stability and relatively low chemical reaction activity is formed. By adopting a solid solution structure, resistivity rising caused by mass precipitation of solute elements is avoided; due to the introduction of an element Nb with a large atomic radius, interdiffusion between Cu and surrounding media can be effectively blocked; and due to the proportional addition of the second group of elements Ni, the addition quantity of Nb can be greatly reduced, thereby reducing an electron scattering effect caused by large atom selves to a large extent, facilitating the stabilization of the Cu film and guaranteeing that the resistivity of the Cu film is minimally influenced. The Cu-Ni-Nb ternary alloy film can be expected to simultaneously have a diffusion blocking effect as well as high temperature stability.
Owner:DALIAN UNIV OF TECH

Amorphous alloy composition design method based on thermodynamics factors and structural factors

The invention discloses an amorphous alloy composition design method based on thermodynamics factors and structural factors. The amorphous alloy composition design method comprises the following steps: (1) based on binary block body metal glass, selecting a third component with the principle that the atomic radius difference is about greater than 12%, and connecting a binary amorphous composition point with the third component in a ternary diagram to obtain an atomic structure predicted composition line; (2) based on the binary block body metal glass, calculating the delta Hh.delta Hmix.Sconfig predicted value under different contents of the third component, connecting each minimal value in a ternary alloy diagram to be a line, namely a predicted composition line of thermodynamics; and (3) researching the composition relevance between the alloy at the crossed part of the two predicted composition lines in (1) and (2) and the amorphous forming capacity, and determining the intersection point composition of the two predicted composition lines, namely the amorphous alloy composition of final design. According to the composition design method provided by the invention, the accuracy of amorphous alloy composition design is improved, and the error rate in developing novel amorphous alloys is reduced. The method is simple and clear, and easy to understand and grasp.
Owner:HOHAI UNIV CHANGZHOU

Preparation technology of silicon-carbon composite negative electrode material

The invention relates to a preparation technology of a silicon-carbon composite negative electrode material. In the preparation technology, a coated modified auxiliary material is used as high-purityindustrial silicon, and a graphite main material is low-ash anthracite. Through innovative adoption of glucose coating carbonization, a coating material is approximately nanocrystalized, so that a coating layer is formed more perfectly and uniformly; fluorocarbon resin is used, fluorine is an element with unique and stable properties, and in the periodic table, fluorine has the strongest electronegativity and the lowest polarizability and has the atomic radius is second only to that of hydrogen; therefore, C-F bonds are very difficultly destroyed by light, heat, electrochemical factors and thelike, F atoms have more negative charges, the adjacent fluorine atoms are mutually exclusive, the fluorine atoms on a fluorine-containing hydrocarbon chain are spirally distributed along C-C bonds ofgraphite, and peripheries of the C-C bonds are surrounded by the fluorine atoms to form a highly-stable three-dimensional protection barrier to protect the stability of the graphite, so that the graphite structure in the charge and discharge process of a lithium battery is improved and the cycle life is increased; the first-time capacity of the industrial silicon is lower by 1500-2000mah/g.
Owner:四川吉瑞德新能源材料有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products