Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

786 results about "Bifunctional catalyst" patented technology

A bifunctional catalyst is term coined to refer to a specific set of hydrogenation catalysts containing Lewis acid and Lewis base.

Mesoporous carbon materials comprising bifunctional catalysts

The present application is directed to mesoporous carbon materials comprising bi-functional catalysts. The mesoporous carbon materials find utility in any number of electrical devices, for example, in lithium-air batteries. Methods for making the disclosed carbon materials, and devices comprising the same, are also disclosed.
Owner:BASF AG

Double function catalyst for synthesizing polycarbonate

The present invention relates to one kind of high activity catalyst for catalyzing and activating CO2 to react with alkane epoxide to synthesize polycarbonate. The high activity catalyst is tetradentate Schiff base metal complex with double function, i. e., it has both electrophlic center originated from the metal ion in the complex and nucleophilic center originated from the quaternary ammonium salt or quaternary phosphonium salt connected to the benzene ring in the complex. The catalyst can catalyze the reaction of CO2 and alkane epoxide effectively to prepare polycarbonate.
Owner:DALIAN UNIV OF TECH

Conversion of oxygenate to propylene using moving bed technology and a separate heavy olefin interconversion step

The average propylene cycle yield of an oxygenate to propylene (OTP) process using a dual-function oxygenate conversion catalyst is substantially enhanced by the use of a combination of: 1) moving bed reactor technology in the catalytic OTP reaction step in lieu of the fixed bed technology of the prior art; 2) a separate heavy olefin interconversion step using moving bed technology and operating at an inlet temperature at least 15° C. higher than the maximum temperature utilized in the OTP reaction step; 3) C2 olefin recycle to the OTP reaction step; and 4) a catalyst on-stream cycle time of 700 hours or less. These provisions hold the build-up of coke deposits on the catalyst to a level which does not substantially degrade dual-function catalyst activity, oxygenate conversion and propylene selectivity, thereby enabling maintenance of average propylene cycle yield for each cycle near or at essentially start-of-cycle levels.
Owner:UOP LLC

Preparation method of aviation kerosene or diesel

The present invention relates to a novel synthetic route of a liquid chain hydrocarbon fuel totally independent of fossil energy based on a lignocellulose raw material to obtain a platform compound. The method includes three parts: 1) preparing oxygen-containing organic compounds with carbon chain length of 8-16 through the acid-catalyzed alkylation reaction by taking lignocelluloses-based carbonyl-containing platform compounds and furan platform compounds as raw materials on a novel solid catalyst; 2) effectively removing carbon-carbon double bonds and carbon-oxygen double bonds to prepare saturated oxygen-containing organic compounds by hydrogenation of the alkylated product; and 3) conducting hydrodeoxygenation for the hydrogenated alkylation product by using a metal-solid acid bifunctional catalyst to obtain the biomass aviation kerosene or high grade diesel fuel with the carbon chain length of 8-16 and having a high energy density and stability.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Integrated process and dual-function catalyst for olefin epoxidation

The invention discloses a dual-functional catalyst composition and an integrated process for production of olefin epoxides including propylene oxide by catalytic reaction of hydrogen peroxide from hydrogen and oxygen with olefin feeds such as propylene. The epoxides and hydrogen peroxide are preferably produced simultaneously in situ. The dual-functional catalyst comprises noble metal crystallites with dimensions on the nanometer scale (on the order of <1 nm to 10 nm), specially dispersed on titanium silicalite substrate particles. The dual functional catalyst catalyzes both the direct reaction of hydrogen and oxygen to generate hydrogen peroxide intermediate on the noble metal catalyst surface and the reaction of the hydrogen peroxide intermediate with the propylene feed to generate propylene oxide product. Combining both these functions in a single catalyst provides a very efficient integrated process operable below the flammability limits of hydrogen and highly selective for the production of hydrogen peroxide to produce olefin oxides such as propylene oxide without formation of undesired co-products.
Owner:HEADWATERS TECH INNOVATION GRP

Selective conversion of oxygenate to propylene using moving bed technology and a hydrothermally stabilized dual-function catalyst

The average propylene cycle selectivity of an oxygenate to propylene (OTP) process using a dual-function oxygenate conversion catalyst is substantially enhanced by the use of a combination of: 1) moving bed reactor technology in the hydrocarbon synthesis portion of the OTP flow scheme in lieu of the fixed bed technology of the prior art; 2) a hydrothermally stabilized and dual-functional catalyst system comprising a molecular sieve having dual-function capability dispersed in a phosphorus-modified alumina matrix containing labile phosphorus and / or aluminum anions; and 3) a catalyst on-stream cycle time of 400 hours or less. These provisions stabilize the catalyst against hydrothermal deactivation and hold the build-up of coke deposits on the catalyst to a level which does not substantially degrade dual-function catalyst activity, oxygenate conversion and propylene selectivity, thereby enabling maintenance of average propylene cycle yield near or at essentially start-of-cycle levels.
Owner:UOP LLC

Hydroprocessing methods and apparatus for use in the preparation of liquid hydrocarbons

The present invention is generally related towards enhancing the yield and / or cold-flow properties of certain hydrocarbon products, increasing the degree of isomerization in a diesel product and / or increasing the production rate of a diesel product. The embodiments generally include reducing the residence time of lighter hydrocarbon fractions during hydrocracking, thereby decreasing secondary cracking, by various configurations of introducing at least two hydrocarbon feedstreams of different boiling ranges at different entry points in a hydrocracking unit. A method further includes forming a hydrocarbons stream comprising primarily C5+ Fischer-Tropsch hydrocarbon products; fractionating hydrocarbons stream to form at least a wax fraction and an intermediate fraction which serve as separate feedstreams to a hydrocracking unit comprising at least two hydroconversion zones. One embodiment comprises the use of a bifunctional catalyst in one of the hydrocracking zones so as to favor hydroisomerization of hydrocarbons to favor the formation of branched paraffins boiling in the diesel range.
Owner:PHILLIPS 66 CO

Method for deep desulfurization olefin hydrocarbon reduction of inferior gasoline

The invention discloses a gasoline deep desulphurization and olefin reduction method, comprising that the gasoline raw material and hydrogen are contacted with hydrogenation absorption desulphurization and olefin aromatization difunctional catalyst to remove sulfur in the gasoline and reduce the olefin content in the gasoline product. The method of the invention can produce gasoline product with the sulfur content lower than 50 micrograms per gram, and can further produce gasoline product with the sulfur content lower than 10 micrograms per gram while the olefin content is lower than 20v%, and meanwhile the antiknock quality index loss is low. The method of the invention can be applied to deep desulphurization and olefin reduction process of FCC gasoline, catalytic pyrolysis gasoline, coker gasoline, pyrolysis gasoline and pressure gasoline or the mixed gasoline raw material thereof.
Owner:CHINA PETROLEUM & CHEM CORP +1

Conversion of oxygenate to propylene with selective hydrogen treatment of heavy olefin recycle stream

The average cycle propylene selectivity of an oxygenate to propylene (OTP) process using one or more fixed or moving beds of a dual-function oxygenate conversion catalyst with recycle of one or more C4+ olefin-rich fractions is substantially enhanced by the use of selective hydrotreating technology on these C4+ olefin-rich recycle streams to substantially eliminate detrimental coke precursors such as dienes and acetylenic hydrocarbons. This hydrotreating step helps hold the build-up of detrimental coke deposits on the catalyst to a level which does not substantially degrade dual-function catalyst activity, oxygenate conversion and propylene selectivity, thereby enabling a substantial improvement in propylene average cycle yield. The propylene average cycle yield improvement enabled by the present invention over that achieved by the prior art using the same or a similar catalyst system but without the use of the hydrotreating step on the C4+ olefin-rich recycle stream is of the order of about 1.5 to 5.5 wt-% or more.
Owner:UOP LLC

Method for preparing aviation kerosene from furyl oxygen-containing organic compounds by hydrogenation deoxidation

The invention relates to a new method for preparing hydrocarbons in the scope of aviation kerosene from C8-C16 furyl oxygen-containing organic compounds as raw materials by hydrogenation deoxidation reaction, wherein the C8-C16 furyl oxygen-containing organic compounds are obtained by C-C coupling of lignocellulose based platform chemical compounds; low temperature direct hydrogenation deoxidation under the condition of no solvent of the furyl oxygen-containing organic compounds can be realized by use of a metal-solid acid dual-functional catalyst to obtain a series of low freezing point branched alkanes having the chain in the length range of the aviation kerosene in high yield. The catalyst is composed of two parts of an active metal A and an acid vector X. The catalyst related in the method ahs the characteristics of being in no need of a solvent, simple in operation process, mild in reaction conditions, good in aviation kerosene (or diesel) selectivity, and the like, and is an ideal hydrogenation deoxidation catalyst for preparing liquid fuels from the furyl oxygen-containing organic compounds by the hydrogenation deoxidation.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI

Dual-function oxygen electrode catalyst containing non-noble-metal nanoparticles coated with nitrogen-doped porous carbon layer and preparation method of dual-function oxygen electrode catalyst

The invention relates to the field of catalysts for energy-producing devices such as fuel cells, metal-air cells, electrolysed water and the like, in particular to a dual-function non-noble-metal catalyst and a preparation method thereof. The structure of the dual-function catalyst with activity of realizing oxygen reduction and oxygen release simultaneously is that non-noble-metal nanoparticles are dispersedly coated with a two-dimensional nitrogen-doped porous carbon layer, and the active center of the catalyst is the non-noble-metal nanoparticles coated with nitrogen-carbon, non-noble-metal-nitrogen-carbon and the carbon layer. The non-noble-metal oxygen electrode catalyst has the advantages that raw materials are cheap, a preparation process is simple and template removal and other complicated operating steps are avoided, thereby being suitable for commercial production and capable of substantially reducing cost under the premise that catalytic performance is guaranteed.
Owner:EAST CHINA UNIV OF SCI & TECH

Fe, Ni and N three-doped carbon nanotube coated type FeNi@NCNT catalyst as well as preparation method and application thereof

The invention discloses a Fe, Ni and N three-doped carbon nanotube coated type FeNi@NCNT catalyst as well as a preparation method and application thereof, and belongs to the fields of energy materialsand electrochemistry. The catalyst is prepared by using dicyandiamide as a C source and N source and ammonium ferric citrate and NiCl2.6H2O as metal sources, adopting one pot method and performing pyrolysis in two steps; and a plurality of Fe and Ni metal particles in the catalyst are uniformly wrapped in walls of ''bamboo-like'' N-doped carbon nanotubes, and a small number of the particles are distributed at the tip ends of the carbon nanotubes. Compared with a common metal alloy oxygen reduction reaction and oxygen evolution reaction bifunctional catalyst, the catalyst disclosed by the invention exhibits good oxygen evolution reaction activity and stability under alkaline conditions; the preparation method is simple, and raw materials used in the method have low costs and wide sources;and the catalyst can be widely used in the fields of proton exchange membrane fuel cells, electrolyzed water, metal-air batteries and the like, and has higher practical value.
Owner:DALIAN UNIV OF TECH

Metal supported MCM-22 molecular sieve hollow sphere bifunctional catalyst preparation method and application thereof

The invention relates to a metal supported MCM-22 molecular sieve hollow sphere bifunctional catalyst preparation method and an application thereof, belonging to the molecular sieve catalysis technology. The method is characterized in that carbon black sphere particles are used as template, molecular sieve hollow spheres with multi-stage pore path structure is prepared by rotation hydrothermal crystallization and by using metal active components the prepared molecular sieve hollow spheres are loaded and modified. The prepared Mo / HMCM-22 molecular sieve hollow sphere bifunctional catalyst can be used in methane non-oxidative aromatization reaction system. The effect and the benefit of the invention is that the preparation method of the molecular sieve hollow spheres has simple operation and low cost, and the prepared hollow sphere catalyst has excellent catalytic performance in the methane non-oxidative aromatization reaction, high methane conversion rate and aromatics yield and very long catalyst life.
Owner:DALIAN UNIV OF TECH

Process for preparation of bi-functional fluid catalytic cracking catalyst composition

A process for preparing bi-functional catalyst for Fluid Catalytic Cracking (FCC), that comprises molecular sieves, modified clay and semi-basic alumina and the catalyst for highly effective cracking of high boiling petroleum feedstock to provide simultaneously, enhanced yields of Liquefied Petroleum Gas (LPG) and reduction of undesirable bottoms.
Owner:INDIAN OIL CORPORATION

Nitrogen-doped carbon nanotube-loaded nitrogen-doped carbon-coated iron-cobalt alloy bifunctional catalyst and preparation method and application thereof

The invention discloses a nitrogen-doped carbon nanotube-loaded nitrogen-doped carbon-coated iron-cobalt alloy bifunctional catalyst and a preparation method and an application thereof. The catalyst is characterized in that for a structural unit, nitrogen-doped carbon nanotubes (NCNTs) are utilized as a conductive network, and iron-cobalt alloy nanoparticles wrapped by a nitrogen-doped ultrathin carbon layer are loaded on the nitrogen-doped ultrathin carbon layer. The preparation method comprises steps of pretreatment of carbon nanotubes, removing impurities on surfaces of the carbon nanotubesthrough cleaning, and generating a large number of defects and oxygen-containing surface functional groups on the surfaces of the carbon nanotubes through acid treatment; carrying out grafting reaction of an iron-cobalt organic ligand and melamine on the surfaces of the functionalized carbon nanotubes; calcining the iron-cobalt organic ligand and the melamine-grafted functionalized carbon nanotubes under a high-temperature condition to obtain the nitrogen-doped carbon nanotube-loaded nitrogen-doped carbon-coated iron-cobalt alloy bifunctional catalyst.
Owner:ZHEJIANG SCI-TECH UNIV

Dual functional catalyst of packing type and the catalytic distillation equipment

InactiveUS6117812AIncrease counter current flow fluxLarge external surface areaMolecular sieve catalystsOther chemical processesFractionationCatalytic distillation
The present invention relates to a dual functional catalyst having both the catalytic reaction function and fractionation function and a catalytic distillation equipment for packing the catalyst therein. Said catalyst has a special shape and can be packed at random into the reaction section of said equipment. So, there exist adequate free spaces inside pellet and between pellets, enabling the vapor and liquid streams to pass through the catalyst beds directly and countercurrently, and contact with the dual functional catalyst directly. The reaction between the reactants and fractionation of products can be carried out simultaneously. Thus a high reaction efficiency is achieved. No special inner part is needed in the reaction section to pack the catalysts, so the structure of the equipment is simple and easy to operate, and the investment and cost of operation are low.
Owner:CHINA PETROCHEMICAL CORP +1

Methods and equipments of using dual functional catalyst of packing type

The present invention relates to a method of catalyzing etherification, esterification, hydration, ether cleavage, isomerization alkylation, or other reactions which are catalyzable with an acid or molecular sieve catalyst. Said reactions are conducted using a novel, dual functional catalyst prepared with active components and a small amount of binder, wherein said dual functional catalyst comprises cylindrical pellets which are molded such that a cross-section or each pellet has a window lattice shape with external teeth, or a star shape with inner spokes.
Owner:CHINA PETROCHEMICAL CORP +1

Bifunctional catalyst and preparation method and application thereof

The invention belongs to the field of environmental protection and catalyst, disclosing a bifunctional catalyst and a preparation method and an application thereof. The catalyst is prepared in a manner that substance containing rare earth metal element cerium, substance containing alkali metal element potassium and substance containing transition metal elements are loaded on a carrier under the action of adhesive to be baked; wherein transition metal elements are 1-3 elements of Cu, Mn, Fe, V, Co. The catalyst has low cost and high catalytic activity, does not cause secondary pollution, is suitable for preparation of chlorine by oxidation of hydrogen chloride to realize the recycling of chlorine resource, and is also suitable for deep oxidation combustion of organic impurities such as cyclohexane, benzene, toluene and the like in industrial waste gas.
Owner:南京资环工程技术研究院有限公司

Method for producing isopropylbenzene by hydrogenolysis of alpha, alpha-dimethyl benzyl alcohol

The invention relates to a method for producing isopropylbenzene by the hydrogenolysis of alpha, alpha-dimethyl benzyl alcohol, which mainly solves the problems of environmental pollution of a chromium-containing catalyst system in the traditional hydrogenolysis production of the alpha, alpha-dimethyl benzyl alcohol, higher reaction temperature and pressure, large energy consumption and power consumption and corrosion of an additive to equipment. The invention better solves the problems by adopting the technical scheme that the catalytic hydrogenolysis of the alpha, alpha-dimethyl benzyl alcohol is carried out to convert the raw material of the alpha, alpha-dimethyl benzyl alcohol after alkali wash into the isopropylbenzene by hydrogen gas and a bifunctional catalyst containing Pd or Pd-Pt metal under the conditions that the temperature is 80-200 DEG C and the hydrogen pressure calculated by the gage pressure is 0.1-2.0MPa. The invention can be used for the industrial production of the isopropylbenzene prepared by the hydrogenolysis of the alpha, alpha-dimethyl benzyl alcohol.
Owner:CHINA PETROLEUM & CHEM CORP +1

Single-cell-thickness nano porous cobalt oxide nanosheet array electrocatalytic material

A single-cell-thickness nano porous cobalt oxide nanosheet array electrocatalytic material is characterized in that a metal-doped cobalt oxide primary nanosheet array is perpendicularly grown on a conductive substrate, a porous nanosheet is obtained from each primary nanosheet, and the nanosheets are of porous structure; the material is used as an electrocatalyst for oxygen evolution reaction; the material also has excellent hydrogen evolution performance and may function as a bifunctional catalyst for an alkaline full-decomposition water system. The invention has the advantages that the material can effectively reduce overpotential and peaking potential of oxygen evolution reaction, increase conversion rate of single cobalt atoms and operate stably and continuously in a strong alkali environment; the material has excellent oxygen evolution reaction performance and can be applied as an anode and cathode of a full-decomposition water system, effectively reducing trough voltage; the material is simple to prepare, convenient to operate, low in cost and environment-friendly, and new idea and strategy are provided for the guide design and performance optimization of the bifunctional catalyst for the full-decomposition water system.
Owner:TIANJIN UNIVERSITY OF TECHNOLOGY

Catalyst and process for oxidation and removal of nitrogen oxides (NOx) from combustion gases

A bi-functional oxidation catalyst and process for catalytic oxidation and removal of nitrogen oxides (NOx) from combustion gases derived from combustion of carbonaceous fuels such as coal, oil, or natural gas. The bi-functional catalyst includes adsorption and oxidation function metal oxides provided in adjacent close intimate contact by utilizing a binding agent, such as carboxylic acid and calcining to provide a metal oxide complex having a crystalline form. Such nitrogen oxides (NOx) contained in the combustion gases are initially catalytically oxidized to at least about 50 vol % NO2 and some higher oxides by contact with the bi-functional catalyst at 170-550° F. temperature. The combustion gas containing the partially oxidized NOx is then preferably further chemically oxidized by being mixed with a chemical oxidant such as ozone (O3) in a molar ratio of the chemical oxidant3 to NOx in the range of 0.5:1-1.2:1 to produce higher oxides of nitrogen such as substantially N2O5. The further treated combustion gas containing the N2O5 is next scrubbed with a suitable scrubbing liquid such as water to effectively remove the nitrogen oxides (NOx) and produce a clean treated flue gas stream containing less than about 15 ppm nitrogen oxides and suitable for environmentally safe discharge to the atmosphere.
Owner:HEADWATERS TECH INNOVATION GRP

Nickel cobalt oxide/carbon nanotube composite catalyst, preparation and application thereof

The invention relates to a nickel cobalt oxide / carbon nanotube composite catalyst, a preparation and an application thereof. The bi-functional catalyst comprises carbon nanotube and nickel cobalt oxide NiCo2O4 spinel; according to the preparation, nickel acetate, cobalt nitrate and carbon nanotube are respectively weighed, and then dissolved in ammoniacal liquor and the obtained material is performed with ultrasonic dispersion, then is subjected to a hydrothermal reaction at temperature of 140-160 DEG C for 3-6 hours, the obtained product is cooled to room temperature, cleaned and dried, calcined and ground to obtain the bi-functional catalyst. The invention also provides an application of the bifunctional catalyst in preparation of an air electrode of a metal air battery. The bi-functional catalyst has efficient oxygen reduction performance and efficient oxygen evolution performance in air.
Owner:DONGHUA UNIV

Method for preparing 1,3-propylene glycol by utilizing glycerol one-step hydrogenolysis method

The invention relates to a method for preparing 1,3-propylene glycol by utilizing a glycerol one-step hydrogenolysis method, in particular to preparation of a loaded solid acid bifunctional catalyst and a method for preparing 1,3-propylene glycol by virtue of glycerol selective hydrogenolysis by utilizing the catalyst. The method provided by the invention comprises the step of introducing hydrogen and reacting for 6-48 hours under the conditions that glycerol is taken as raw material, solvent and catalyst exist, reaction temperature is 100-230 DEG C and reaction pressure is absolute pressure of 0.2-10.0MPa. In the bimetal modified loaded strong acid catalyst prepared by adopting the method provided by the invention, a second non-precious metal is doped into the catalyst, dispersion degree of previous metal is further improved, thus the catalyst has stronger acidity, larger specific area and good stability; in the catalyst containing trace previous metal, cheap non-previous metal is introduced; glycol conversion rate is improved under lower reaction pressure while selectivity of 1,3-propylene glycol is obviously improved; meanwhile, effective utilization rate of the previous metal is improved, and cost of the catalyst is reduced.
Owner:SOUTHEAST UNIV

Bi-functional catalyst for alkaline water system metal/air battery and preparation method thereof

The invention discloses a bi-functional catalyst for an alkaline water system metal / air battery and a preparation method thereof. The catalyst is a core-shell structure material formed by coating transition metal simple substance particles by nitrogen doped carbon; the preparation process is: taking transition metal salt and urea as raw materials, obtaining precursors of transition metal simple substance particles through a hydrothermal method, coating nitrogen contained polymers on the surfaces of the precursors through in situ polymerization, and carrying out high-heat treatment to obtain the catalyst. The catalyst is good in stability, has bi-functional catalytic activity (ORR and OER) and has high catalytic activity in alkaline environment; the preparation technology is strong in controllability and easy in repetition and satisfies the industrial production demand.
Owner:CENT SOUTH UNIV

Preparation method for Ni-Co/carbon nanotube aerogel catalyst of zinc-air battery

The invention discloses a preparation method for a Ni-Co / carbon nanotube aerogel catalyst of a zinc-air battery, which is used for the field of the zinc-air battery. In the catalyst, the nanometer Ni-Co / carbon nanotube aerogel dual-functional catalyst is successfully prepared by taking sodium alginate, cobalt chloride hexahydrate, nickel chloride hexahydrate and carbon nanotubes as raw materials. The dual-functional catalyst is endowed with excellent oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) catalytic performance, the initial potential of OER is early, the current density of the dual-functional catalyst is large, the initial potential of ORR is early, the limiting current density is large, and the stability is high; and moreover, the charging and discharging voltage difference of the zinc-air battery before and after long circulation test is small, and the energy efficiency after long circulation is high. The preparation method has the advantages of simplicity, rapidness in operation, greenness and environment friendliness, the source of sodium alginate is rich, and the obtained dual-functional catalyst is excellent in performance and is the zinc-air battery catalyst having a very good prospect.
Owner:QINGDAO UNIV

Method for producing oil by injecting air buffering catalytic oxidation of thick oil

InactiveCN1987043AHigh viscosity reduction rateComply with mining process requirementsFluid removalCatalytic oxidationDiluent
A catalytic oxidizing method for extracting high-viscosity crude oil features that the aqueous solution of the water-soluble or lipo-soluble refrectory catalyst with both catalytic oxidizing and cracking functions is proportionally filled in oil stratum, the steam used as heating medium and diluent is then filled, the air used as oxidant is finally filled, and the viscosity of crude oil is decreased by 20-100% after catalytic oxidizing and cracking reactions.
Owner:SOUTHWEST PETROLEUM UNIV

Nickel hydroxide/nickel disulfide/foam nickel composite and preparation method thereof, and application thereof

The invention discloses a nickel hydroxide / nickel disulfide / foam nickel composite and a preparation method thereof, and application thereof. The composite is expressed in the form of Ni(OH)2 / Ni3S2 / NFand can be used as an electrode. In the electrode structure, the nano-stem-like Ni3S2 / NF is a conductive skeleton, and the Ni(OH)2 nanosheet is equivalent to a leaf and grows on the nano-stem-like Ni3S2 / NF skeleton. The heterointerface of Ni(OH)2 and Ni3S2 having a defect structure is the active center. The Ni(OH)2 / Ni3S2 / NF electrode can be used as a bifunctional catalyst, has excellent cathodic catalytic hydrogen evolution and anodic catalytic oxygen evolution reaction performance, and has high current long-term total electrolysis hydrogen production and oxygen production stability. Comparedwith noble metal catalysts such as Pt and RuO2, the catalyst synthesis method is simple, rich in raw materials and low in cost.
Owner:JINAN UNIVERSITY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products