Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

840 results about "Co2 adsorption" patented technology

Shale gas reservoir pore structure quantitative calculation method based on nuclear magnetic resonance

The invention discloses a shale gas reservoir pore structure quantitative calculation method based on nuclear magnetic resonance. The shale gas reservoir pore structure quantitative calculation methodcomprises the following steps: collecting cores; drilling parallel samples, carrying out oil and water self-adsorption nuclear magnetic resonance experiment measurement; contrastively analyzing the difference of a parallel sample oil and water nuclear magnetic resonance T2 spectrum, and determining the distribution of different wetting pore types on the nuclear magnetic resonance T2 spectrum; obtaining a shale gas reservoir full-pore distribution curve according to high-pressure pressurized mercury, nitrogen adsorption and carbon dioxide adsorption; furthermore, obtaining an intersection plate of pore diameters and corresponding T2 time; and according to the intersection plate of different pore types of pore diameters and corresponding T2 time, establishing a quantitative calculation model of the pore diameters according to the pore types. The method has the advantages that a shale gas reservoir pore full-pore distribution curve can be quantitatively calculated through the technology;simultaneously, the nuclear magnetism measurement is quick, simple and loss-free, and is higher in practicability by compared with high-pressure pressurized mercury, nitrogen adsorption and carbon dioxide adsorption; and compared with a conventional method, the calculation result is more accurate.
Owner:SOUTHWEST PETROLEUM UNIV

Organic amino supported metallic organic framework-porous polymer composite material as well as preparation method and application thereof

ActiveCN108786755ALarge specific surface areaHigh adsorption capacity/rate/selectivityProductsOther chemical processesEmulsionDesorption
The invention discloses an organic amino supported metallic organic framework-porous polymer composite material. The material consists of organic amino, a metallic organic framework material and a porous polymer of multi-stage pore structures which are mutually communicated, wherein metallic organic framework crystal granules are embedded into pore wall surfaces of pore walls of the porous polymer; the organic amino is bonded with the pore wall surfaces of the porous polymer through chemical bonds and bonded with the surface of the metallic organic framework through chemical bonds or coordination bonds; the composite material has a specific surface area greater than or equal to 50m<2> / g. The invention further provides a preparation method of the organic amino supported metallic organic framework-porous polymer composite material. The preparation method comprises the following three steps: carrying out high inner phase emulsion template crosslinking copolymerization, carrying out MOF (Metallic Organic Framework) in-situ growth or MOF multi-time growth, and carrying out organic amino supporting. The organic amino supported metallic organic framework-porous polymer composite materialdisclosed by the invention is used for capturing and separating CO2 and has the advantages of being high in CO2 adsorption capacity / velocity / selectivity, rapid in desorption speed, high in adsorption / desorption circulation stability, excellent in high-temperature and moisture resistance, and the like.
Owner:ZHEJIANG UNIV

Nitrogen-doped porous hollow carbon sphere carbon dioxide adsorption material as well as preparation method and application thereof

The invention relates to a nitrogen-doped porous hollow carbon sphere carbon dioxide adsorption material as well as a preparation method and application thereof. The preparation method comprises the following steps: adding SiO2 sphere flowers into mixed liquid of deionized water, absolute ethyl alcohol and ammonia water, and carrying out ultrasonic oscillation until the SiO2 sphere flowers are completely dispersed; and then adding a dopamine hydrochloride water solution, uniformly stirring at the room temperature, filtering, washing, drying, and processing at 700-900 DEG C for 2-4 hours in a N2 atmosphere so as to obtain nano-composite spheres; and finally impregnating the nano-composite spheres in hydrofluoric acid to remove the SiO2 sphere flowers, filtering, washing, and drying, so as to obtain the nitrogen-doped porous hollow carbon sphere CO2 adsorption material. The adsorption material is a porous hollow carbon sphere, the particle sizes of porous hollow nano-carbon spheres are about 400nm, the porous hollow nano-carbon spheres are uniform and regular, and the adsorption material has high nitrogen content, adsorptive property, specific surface area and pore volume and high-dispersed regular appearance, the surface of the adsorption material contains rich amino active sites, and the adsorption material can be applied to efficient adsorption of industrial CO2.
Owner:SHAANXI YUTENG IND
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products