Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

316results about How to "Lower injection barrier" patented technology

QLED, preparation method and display apparatus

The invention provides a QLED, a preparation method and a display apparatus. The QLED comprises a substrate, a positive electrode, a hole transport layer, a light emitting layer, an electron transport layer and a negative electrode in sequence; the light emitting layer comprises quantum dots and a dispersing agent with a dendritic molecular structure; and the quantum dots are dispersed among side chains of the dendritic molecules. Compared with long-chain ligands on the surfaces of the quantum dots, an insulating layer is not formed on the surfaces of the quantum dots in the dendritic molecular structure, so that charge injection potential barrier of impedance, holes and electrons to the quantum dots on the surfaces of the quantum dots can be greatly lowered; in addition, the spacings between the quantum dot molecules, between quantum dots and the electron transport layer, and between the quantum dots and the hole transport layer can be closer, thereby improving the concentration of the quantum dots in the light emitting layer, and the exciton energy transfer efficiency; and by virtue of the OLED, the dispersity and yield of the quantum dots can be ensured while the current carrier energy transfer validity can be reinforced, thereby enhancing the light emitting efficiency of the OLED and the luminance of the OLED display apparatus.
Owner:HISENSE VISUAL TECH CO LTD

Hole injection layer manufacturing method, hole injection layer and QLED device

The invention discloses a hole injection layer manufacturing method, a hole injection layer and a QLED device. The method comprises the steps of A, cleaning an ITO substrate base plate, and then drying the ITO substrate base plate; B, carrying out surface treatment on the ITO substrate base plate; and C, attaching transition metal oxides to the surface of the ITO substrate base plate so as to act as a hole injection layer of the QLED device, wherein the transition metal oxides are attached to the surface of the ITO substrate base plate through a sol-gel method. According to the invention, the transition metal oxides, which mainly comprise molybdenum oxide, vanadium oxide, tungsten oxide and the like, are adopted to act as hole injection layer materials of the QLED device so as to adjust a work function of the ITO substrate, so that the work function of the hole injection layer materials of the QLED device is enabled to be effectively adjusted in a large range, and red, green and blue quantum dots are facilitated to be able to find hole injection layer materials with good energy level matching according to the positions of valence bands, thereby effectively reducing the injection barrier of holes, and improving the luminous efficiency of the device.
Owner:TCL CORPORATION

Core-shell quantum dot and preparation method thereof as well as electroluminescent device comprising core-shell quantum dot

The invention provides a core-shell quantum dot and a preparation method thereof as well as an electroluminescent device comprising the core-shell quantum dot. A core of the core-shell quantum dot isCdSeXS(1-X) and a shell layer of the quantum dot comprises a first shell layer and a second shell layer; the first shell layer is selected from one or more of ZnSe, ZnSeYS(1-Y) and Cd(Z)Zn(1-Z)S; thesecond shell layer which covers the first shell is Cd(Z)Zn(1-Z)S or ZnS; the maximum emission peak value of the core-shell quantum dot is less than or equal to 480nm, and X, Y and Z are all greater than 0 and less than 1. The bandwidth of a CdSeXS(1-X) core is relatively small and a HOMO energy level is relatively shallow, so that the core-shell quantum dot is easily injected into a hole; the material energy band of the first shell layer is located between the core and the second shell layer, so that the defects of the core are reduced and the photoluminescence efficiency of the quantum dot isimproved; the carrier injection potential barrier is reduced, and the efficiency and service life of an external quantum are improved; the quantum dot is passivated by the second shell layer, that the stability of a whole body is improved.
Owner:NANJING TECH CORP LTD

Controllable asymmetric doping potential barrier nano silicon based luminous device and method for producing the same

The invention relates to an nc-Si based luminescent device based on a controllable asymmetric quantum well structure doping with voltage barrier and a preparation method thereof, which belongs to the technical field of nano-electronics and nano-photoelectronic device material. The luminescent device is deposited with an amorphous carborundum thin film doping with boron as a cavity barrier layer on a semiconductor substrate; the cavity barrier layer is deposited with an nc-Si film which is generated by the anneal of an amorphous silicon film and is used as a luminescent active layer; the luminescent active layer is deposited with an amorphous silicon dioxide thin film doping with phosphor which is used as an electronic barrier layer; the electronic barrier layer is deposited with a conductive film which is left with an optical window and used as the cathode of the luminescent device, while the back side of the semiconductor substrate is deposited with a conductive film which is used as the anode of the luminescent device. The technical process of the invention relates to that a multi-layer film with the quantum well structure is prepared; then annealing and crystallization are processed and the electrodes of the device are prepared. The luminescent device has the advantages of high efficient and balanced current carrier injection structure and the Si / SiO2 luminescent system, which provides the possibility of the realization of a high efficient Si-based luminescent device.
Owner:NANJING UNIV

Optical thin film based on inorganic perovskite quantum dot and conjugated organic small molecule eutectic structure

The invention discloses an optical thin film based on an inorganic perovskite quantum dot and a conjugated organic small molecule eutectic structure. The optical thin film is characterized in that theoptical thin film based on the inorganic perovskite quantum dot and conjugated organic small molecule eutectic structure is obtained by commonly dispersing the inorganic perovskite quantum dot and aconjugated organic small molecule into an organic solvent to form a composite dispersion solution, and carrying out a dipping and drawing, inkjet printing or spin-coating technology on the composite dispersion solution to form the film. According to the optical thin film disclosed by the invention, components can be quantitatively controlled based on components of the composite dispersion solutionto form the eutectic structure, and multiple beneficial effects are provided for functionalized application of the thin film; the fluorescence quantum efficiency and the chemical stability of a quantum dot material can be improved; the thin film can be used for detecting high-energy rays based on absorption properties and a photophysical process of the material designed by the system; a conjugated organic small molecule material with high mobility can reduce energy loss caused by charge injection and transmission under a current driving condition.
Owner:SHANGHAI BEEN SEMICON TECH CO LTD

Organic light-emitting device

The invention relates to an organic light-emitting device (OLED). The hole transport layer used by the OLED comprises a first hole material layer, a transition layer formed by a first hole transport material and a second hole transport material, and a second hole material layer, wherein the first hole material layer, the transition layer, and the second hole material layer are stacked. The first hole material layer is arranged close to a first electrode layer. The dosage concentration of the second hole transport material in the transition layer is gradually increased along the direction far from the first hole transport material layer. An energy level difference between the HOMO of the second hole transport material HTL2 and the HOMO of the host material of a light-emitting layer is less than 0.5eV, namely HTL2HOMO-HOSTHUMO is less than or equal to 0.5eV. The energy gap Eg of the HTL2 is over 0.3eV greater than that of the light-emitting host, namely HTL2Eg-HOSTEg is less than or equal to 0.3eV. The energy gap of the host material of the light-emitting layer is from 2.5 to 3.5eV. The hole transport layer forms continuous concentration gradient structure by using the evaporation of a linear evaporator source so as to reduce the number of evaporation chamber evaporation sources and greatly reduce hole injection barrier. Therefore, the voltage of the device can be obviously decreased and efficiency is increased.
Owner:GUAN YEOLIGHT TECH CO LTD

QLED device, display device and preparation method of display device

The invention belongs to the technical field of display application and provides a QLED device, a display device and a preparation method of the display device. The QLED device comprises a substrate,a bottom electrode, a hole transport layer, a quantum dot light-emitting layer, an electron transport layer, a top electrode and a hole injection layer, wherein the substrate, the bottom electrode, the hole transport layer, the quantum dot light-emitting layer, the electron transport layer and the top electrode are sequentially arranged; the hole injection layer is prepared through doping a hole injection material and an interface-modified material; and the interface-modified material is a p-type conductive material. According to the QLED device, the hole injection layer is prepared through doping the hole injection material and the interface-modified material, so that the hole transport capacity and the ionization energy are improved and the hole injection barrier is reduced, thereby effectively improving the electric conductivity, reducing driving voltage, improving injection balance of charge carriers, simultaneously reducing charges of the device, improving the power efficiency ofthe device and prolonging the service life of the device.
Owner:TCL CORPORATION

Low-voltage and high-efficiency organic LED and preparation method thereof

The invention provides a low-voltage and high-efficiency organic LED. The low-voltage and high-efficiency organic LED comprises a glass substrate with an ITO, a hole-transmission layer, a p type doped luminescence layer, an i type intrinsic luminescence layer, an n type doped luminescence layer, an electronic transmission layer, a composite electron injection layer and a cathode which are sequentially overlapped to form an overlapping layer; the p type doped luminescence layer is prepared through hole transmission material in which blue fluorescent dye is doped; the i type intrinsic luminescence is prepared through blue fluorescent dye; the n type doped luminescence layer is prepared through the electron transmission material in which blue fluorescent dye is doped; the three luminescence layers are named p-i-n type luminescence layer; and the composite electronic injection layer is prepared through cesium carbonate in which a thin aluminum layer is inserted. The low-voltage and high-efficiency organic LED has the advantages that the composite electron injection layer with a thin aluminum layer inserted into the cesium carbonate layer and the p-i-n type luminescence layer are arranged, so that the luminescence efficiency is improved, and the reduction of the efficiency is delayed; the driving voltage is low, the luminance is high, the efficiency is high, the stability is improved, and the preparation process is simple.
Owner:TIANJIN UNIVERSITY OF TECHNOLOGY

Organic light emitting diode device, display panel and display device

The invention discloses an organic light emitting diode device, a display panel and a display device. The organic light emitting diode device is mainly characterized in that existing serial top-emitting OLED devices are improved, a homojunction structure is utilized and functional layers of the top-emitting OLED devices connected in series are improved, so that each function layer comprises a hole injection layer, a hole transmission layer, a hole side light-emitting layer, an electron injection layer, an electron transmission layer, an electron side light-emitting layer and at least one group of charge producing layers a and charge producing layers b located between the hole side light-emitting layer and the electron side light-emitting layer, the hole injection layer, the hole transmission layer and the hole side light-emitting layer are sequentially arranged on the side close to an anode, the electron injection layer, the electron transmission layer and the electron side light-emitting layer are sequentially arranged on the side close to a cathode. A first light-emitting unit ...and an Nth light-emitting unit of each serial top-emitting OLED device are of homojunction structures, the using categories of organic materials are decreased, injection potential barriers of charge carriers in the devices are eliminated, the charge carrier injection efficiency and the efficiency of the devices are improved, and drive voltage of the devices is reduced.
Owner:BOE TECH GRP CO LTD

Organic electroluminescent light emitting device and preparation method thereof

The invention provides an organic electroluminescent light emitting device which comprises a conductive anode substrate, a hole injection layer, a hole transmission layer, an electron blocking layer, a light emitting layer, a hole blocking layer, an electron transmission layer, an electron injection layer and a cathode which are stacked in order. The material of the electron blocking layer is a mixture of a first compound and a phosphorescent material. The first compound is a bipolar metal oxide, a lithium salt or a silicone small molecule. According to the organic electroluminescent light emitting device, the transmission rate of a hole can be improved by the electron blocking layer, electrons can be blocked at one side of electron blocking layer close to the light emitting layer, the hole can be blocked at one side of the hole blocking layer close to the light emitting layer by the hole blocking layer, thus the recombination area of excitons are controlled in the light emitting layer, and the light emitting efficiency of the organic electroluminescent light emitting device is improved. In addition, the invention also provides the preparation method of the organic electroluminescent light emitting device.
Owner:OCEANS KING LIGHTING SCI&TECH CO LTD +2

Short-circuit-preventing top-emission OLED device and manufacturing method thereof

The invention discloses a short-circuit-preventing top-emission OLED device and a manufacturing method thereof. Specifically, the OLED device comprises a substrate, a short-circuit-preventing reflective anode, a hole-injection layer, a hole-transporting layer, a light emitting layer, an electronic transmission layer also serving as a spacing layer, an electronic injection layer and a semi-transparent cathode. The manufacturing method comprises the following steps of (1) preprocessing the substrate; (2) performing vapor plating on an aluminum layer in the anode; (3) performing vapor plating on a silver layer in the anode; (4) performing vapor plating on the hole-injection layer; (5) performing vapor plating on the hole-transporting layer; (6) performing vapor plating on the light emitting layer; (7) performing vapor plating on the electronic transmission layer; (8) performing vapor plating on the electronic injection layer; (9) and performing vapor plating on the cathode. The device which adopts an aluminum/silver composite anode makes the high reflectivity characteristics of silver fully developed and meanwhile has the advantage of silver overcoming a device short circuit problem. The short-circuit problem of a pure silver anode is thoroughly solved. Meanwhile, the cathode thickness is optimized. Good conductive capabilities and relatively high light transmittance are further kept.
Owner:SUZHOU UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products