Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

103results about How to "Reduce charge density" patented technology

Manufacturing method for gate dielectric layer and manufacturing method for transistor

The invention provides a manufacturing method for a gate dielectric layer and a manufacturing method for a transistor. The manufacturing method for the gate dielectric layer comprises the steps that an interface layer is formed on a substrate by the adoption of a thermal growth method; a high-k gate dielectric layer is formed on the interface layer; surface processing is conducted on the interface layer or the high-k gate dielectric layer by the adoption of aqueous solution containing O3 or H2SO4 and H2O2. According to the manufacturing method for the gate dielectric layer and the manufacturing method for the transistor, due to the facts that the best interface layer is formed by the adoption of the thermal growth method, and the surface processing is conducted on the interface layer or the high-k gate dielectric layer by the adoption of the aqueous solution containing O3 or H2SO4 and H2O2, a large number of OH keys which are suitable for improving the coverage rate of the high-k gate dielectric layer are formed on the surface of the interface layer or the high-k gate dielectric layer, the high-k gate dielectric layer can nucleate more easily on the interface layer, and interfacial characterization between the interface layer and the high-k gate dielectric layer is improved.
Owner:SEMICON MFG INT (SHANGHAI) CORP

Method of manufacturing CMOS devices by the implantation of N- and P-type cluster ions

A method of manufacturing a semiconductor device is described, wherein clusters of N- and P-type dopants are implanted to form the transistor structures in CMOS devices. For example, As4Hx+clusters and either B10Hx or B10Hx+ clusters are used as sources of As and B doping, respectively, during the implants. An ion implantation system is described for the implantation of cluster ions into semiconductor substrates for semiconductor device manufacturing. A method of producing higher-order cluster ions of As, P, and B is presented, and a novel electron-impact ion source is described which favors the formation of cluster ions of both positive and negative charge states. The use of cluster ion implantation, and even more so the implantation of negative cluster ions, can significantly reduce or eliminate wafer charging, thus increasing device yields. A method of manufacturing a semiconductor device is further described, comprising the steps of providing a supply of dopant atoms or molecules into an ionization chamber, combining the dopant atoms or molecules into clusters containing a plurality of dopant atoms, ionizing the dopant clusters into dopant cluster ions, extracting and accelerating the dopant cluster ions with an electric field, selecting the desired cluster ion by mass analysis, modifying the final implant energy of the cluster ion through post-analysis ion optics, and implanting the dopant cluster ions into a semiconductor substrate. In general, dopant clusters contain n dopant atoms where n can be 2, 3, 4 or any integer number. This method provides the advantages of increasing the dopant dose rate to n times the implantation current with an equivalent per dopant atom energy of 1/n times the cluster implantation energy. This is an effective method for making shallow transistor junctions, where it is desired to implant with a low energy per dopant atom.
Owner:SEMEQUIP

Gene vector system containing targeted shading system, preparation and use thereof

The invention relates to a gene delivery system containing a target shielding system and a preparation method and application thereof. The gene delivery system consists of a shielding system with a target ligand, a cation polymer material and plasmid DNA, wherein, the cation polymer material and the plasmid DNA are compounded to form compound particles, and the shielding system with the target ligand is shielded on the surface of the compound through electrostatic effect. The gene delivery system containing the target shielding system can transfer a loaded genic material into cells to realize the expression of the genic material and finish a transfection process, and the targeting of gene transfection can be improved. The preparation method has the advantages that: the target ligand is grafted onto the shielding system; on the one hand, the targeting strategy can not affect the compound ability of a cationic polymer to the DNA, on the other hand, the targeting strategy can also guarantee that the target ligand is extended to the periphery of the gene delivery system so as to improve the combination efficiency of the target ligand and a cell surface receptor. The highest transfection efficiency of the gene delivery system to a HeLa cell is 73 percent, and the toxicity of the cell is small.
Owner:CHANGCHUN INST OF APPLIED CHEMISTRY - CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products