Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2762 results about "Nickel based" patented technology

A nickel-based alloy is an alloy whose main constituent is nickel. Nickel and nickel-based alloys are vitally important to industry because of their ability to withstand a variety of severe operating conditions involving corrosive environment, high temperatures, high stresses, and combinations thereof.

Laser fusing and coating process of wear resistant and anticorrosion alloy coatings at surface of slide plate of railroad turnout

A laser cladding process of an exterior wear-resisting anti-corrosive alloy coating of a slide chair of a railway switch comprises processes as follows: firstly, the surface of the slide chair is pre-heated, which means the surface of the slide chair is degreased and de-rusted under room temperature; and the surface is cleaned up by alcohol; then alloy powder is prefabricated, which means iron-base, nickel-base or cobalt base alloy powders that are ready for cladding are preplaced on the processed surface of the slide chair, and a scraping straightedge provided with a rail is used for adjusting the pretreated metal powder so that the alloy powder can be distributed on the surface of the slide chair evenly and has proper thickness to meet the thick requirement of the coating after cladding; and finally, the slide chair is hardened by the laser cladding; the laser of CO2 gas is adopted; a numerical control machine is used as a working table and the surface of the slide chair is hardened by the laser cladding. The laser cladding process has the characteristics of no pollution, high production rate, low energy consumption, the little finishing allowance of cladding coating and low combined cost.
Owner:SHENYANG DALU LASER COMPLETE EQUIP

Layered lithium-nickel-based compound oxide powder and its production process

A layered lithium-nickel-based compound oxide powder for a positive electrode material for a high density lithium secondary cell, capable of providing a lithium secondary cell having a high capacity and excellent in the rate characteristics also, is provided. A layered lithium-nickel-based compound oxide powder for a positive electrode material for a lithium secondary cell, characterized in that the bulk density is at least 2.0 g/cc, the average primary particle size B is from 0.1 to 1 μm, the median diameter A of the secondary particles is from 9 to 20 μm, and the ratio A/B of the median diameter A of the secondary particles to the average primary particle size B, is within a range of from 10 to 200. In production of a layered lithium-nickel-based compound oxide powder, which comprises spray drying a slurry having a nickel compound and a transition metal element compound capable of substituting lithium other than nickel, dispersed in a liquid medium, followed by mixing with a lithium compound, and firing the mixture, the spray drying is carried out under conditions of 0.4≦G/S≦4 and G/S≦0.0012 V, when the slurry viscosity at the time of the spray drying is represented by V (cp), the slurry supply amount is represented by S (g/min) and the gas supply amount is represented by G (L/min).
Owner:MITSUBISHI CHEM CORP

Composite reinforced wear-resistant part of metal-ceramic prefabricated member and manufacturing method of composite reinforced wear-resistant part

The invention discloses a composite reinforced wear-resistant part of a metal-ceramic prefabricated member and a manufacturing method of the composite reinforced wear-resistant part. The manufacturing method comprises the steps as follows: uniformly mixing ceramic particles with self-fluxing alloy powder to obtain a mixture; filling a mould cavity of a pressing machine with the mixture, pressing by pressure, forming and demoulding, and placing biscuits and gaskets into a drying box for drying; placing the dried biscuits and gaskets into a vacuum furnace for sintering, cooling and discharging to obtain the metal-ceramic composite prefabricated member; carrying out sand blasting on the prefabricated member, and spraying a layer of nickel-based self-fluxing alloy powder onto the surface of the prefabricated member; and placing the processed fabricated member onto the end surface of a cast cavity, and pouring metal liquid formed by smelting metal matrix materials into the bottom of the cast cavity to obtain the composite reinforced wear-resistant part of the metal-ceramic prefabricated member. According to the manufacturing method, the wear resistance and the impact resistance of the composite wear-resistant part are improved.
Owner:NANTONG GAOXIN ANTIWEAR MATERIALS TECH CO LTD

Method for removing cracks of Rene104 nickel-based superalloy during laser additive manufacturing

The invention provides a method for removing cracks of Rene104 nickel-based superalloy during laser additive manufacturing, and belongs to the fields of additive manufacturing and superalloy. Aiming at solving the problem that cracks are liable to occur to Rene104 nickel-based superalloy with a high Al content and a high Ti content (Al+Ti>5%) during laser additive manufacturing, by designing laserforming parameters and sub-regional scanning strategies, generation of large-size cracks in a formed part is suppressed; then stress relief annealing is used for completely removing residual stress in the formed part; and discharge plasma sintering treatment is adopted for removing the cracks in the formed part, and grain growth during the sintering process is suppressed. The scheme that after the formed part is obtained through laser additive manufacturing, in combination with stress relief annealing and discharge plasma sintering treatment, the cracks in the formed part are removed is proposed for the first time. By using the method for preparing the Rene104 nickel-based superalloy with the high Al content and high Ti content, no cracks are found in the formed part, and the tensile strength of the formed part at the room temperature can reach 1300 MPa or higher.
Owner:CENT SOUTH UNIV

Method for carrying out laser-cladding on high-hardness nickel-based alloy material in large area

The invention belongs to the field of material surface engineering and more particularly relates to a method for carrying out cladding on a high-hardness wear-resistant anti-corrosion nickel-based alloy material on a metal substrate E in a large area by applying a laser cladding technology, solving the problem of cracks generated in the laser cladding process of the high-hardness wear-resistant nickel-based alloy, in particular the cladding defects, such as cracks with the thickness of more than 1mm, pores and the like during large-area cladding. According to the invention, the high-hardness nickel-based alloy powder material is cladded on the surface of the metal substrate in the large area to form a high-hardness wear-resistant anti-corrosion nickel-based alloy coating by applying the laser cladding technology and adopting a scientific and reasonable process method. According to the method disclosed by the invention, stability and consistency of laser cladding are foundationally ensured, defects, such as cracks, pores, impurities can be prevented from generating, heat affected regions of the substrate are reduced, dilution rate is reduced, the high-wear-resistance anticorrosion nickel-based alloy coating with firm metallurgical bonding and fine and compact grains is obtained and has the hardness reaching 58-63HRC, and the service life of the processed workpiece can be prolonged by more than 1-2 times.
Owner:NINGBO SIASUN ROBOT TECH CO LTD

Nickel-based brazing foil and process for brazing

Disclosed is an amorphous, ductile brazing foil with a composition consisting essentially of NirestCraBbPcSid with 2 atomic percent ≦a≦30 atomic percent; 0.5 atomic percent ≦b≦14 atomic percent; 2 atomic percent ≦c≦20 atomic percent; 0 atomic percent ≦d≦14 atomic percent; incidental impurities ≦0.5 atomic percent; rest Ni, where c>b>c/15 and 10 atomic percent ≦b+c+d≦25 atomic percent. Also disclosed is amorphous, ductile Ni-based brazing foil having a composition consisting essentially of NirestCraBbPcSidCeXfYg wherein a, b, c, d, e, f, and g are numbers such that 2 atomic percent ≦a≦30 atomic percent; 0.5 atomic percent ≦b≦14 atomic percent; 2 atomic percent ≦c≦20 atomic percent; 0 atomic percent ≦d≦14 atomic percent; 0 atomic percent ≦e≦5 atomic percent; 0 atomic percent ≦f≦5 atomic percent; 0 atomic percent ≦g≦20 atomic percent; wherein incidental impurities are present, if at all, in amounts ≦0.5 atomic percent; wherein rest indicates that the balance of the composition is Ni; wherein c>b>c/15; wherein 10 atomic percent ≦b+c+d≦25 atomic percent, wherein X is one or more of the elements Mo, Nb, Ta, W and Cu; and wherein Y is one or both of the elements Fe and Co. Also disclosed are methods for making and using these brazing foils, and brazed objects produced therefrom.
Owner:VACUUMSCHMELZE GMBH & CO KG

Method for preparing injection-molding nickel-base ODS (oxide dispersion strengthened) alloy

The invention provides a method for preparing a nickel-base ODS (oxide dispersion strengthened) alloy by injection molding, belonging to the technical field of injection molding of powder. The method comprises the following steps: carrying out high-energy ball milling on the raw material powder so that Y2O3 particles are uniformly dispersed in a nickel substrate, refining mechanical alloy powder by jet milling, and carrying out plasma nodularization on the powder which is refined by jet milling; evenly mixing and smelting the powder, which is refined by jet milling and plasma nodularization, and adhesive to obtain a uniform feed material; and carrying out injection molding, two-step degreasing and sintering on the feed material to obtain a sintered blank of which the density is 93-96%, carrying out hot isostatic compaction on the sintered blank so that the sintered blank is completely compact, and finally, carrying solution heat treatment and aging heat treatment to obtain the injection-molding nickel-base ODS alloy. The nickel-base ODS alloy can be prepared into high-precision parts in complex shapes, thereby solving the problem of difficulty in molding of nickel-base ODS alloy. The gamma' phase and the oxide strengthening mechanism are combined to greatly enhance the high-temperature mechanical properties of the nickel-base ODS alloy.
Owner:UNIV OF SCI & TECH BEIJING

Metal laser melting additive manufacturing method

The invention discloses a metal laser melting additive manufacturing method. After each layer is machined by utilizing the laser additive manufacturing method, a single-layer laser photocoagulation area is modified by utilizing a selective friction stir welding, photocoagulation cracks are eliminated and nanocrystalline is formed. Each additive-manufactured layer is subjected to laser melting and friction stir welding and multiple layers are machined by the method repeatedly, so that nanocrystalline complex metal components with high strength and ductility and no cracks are manufactured. The laser melting additive manufacturing method provided by the invention comprises a selective laser melting technique based on powder bed formation and a laser engineering near-net forming technique based on laser coaxial powder feeding, wherein the involved metal materials comprise an aluminum base, a copper base, a titanium base, an iron base, a nickel base and a cobalt base; the selective friction stir welding can eliminate cracks, balling and holes generated during laser additive manufacturing and improves the formation quality; the selective friction stir welding can crush network carbides in a laser photocoagulation structure, so that the crushed network carbides are distributed in a dispersion manner, and the structure is regulated to be the nanocrystalline.
Owner:CENT SOUTH UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products