Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

792results about "Lithium oxides/hydroxides" patented technology

Polymer electrolyte, intercalation compounds and electrodes for batteries

Solid battery components are provided. A block copolymeric electrolyte is non-crosslinked and non-glassy through the entire range of typical battery service temperatures, that is, through the entire range of at least from about 0° C. to about 70° C. The chains of which the copolymer is made each include at least one ionically-conductive block and at least one second block immiscible with the ionically-conductive block. The chains form an amorphous association and are arranged in an ordered nanostructure including a continuous matrix of amorphous ionically-conductive domains and amorphous second domains that are immiscible with the ionically-conductive domains. A compound is provided that has a formula of LixMyNzO2. M and N are each metal atoms or a main group elements, and x, y and z are each numbers from about 0 to about 1. y and z are chosen such that a formal charge on the MyNz portion of the compound is (4-x). In certain embodiments, these compounds are used in the cathodes of rechargeable batteries. The present invention also includes methods of predicting the potential utility of metal dichalgogenide compounds for use in lithium intercalation compounds. It also provides methods for processing lithium intercalation oxides with the structure and compositional homogeneity necessary to realize the increased formation energies of said compounds. An article is made of a dimensionally-stable, interpenetrating microstructure of a first phase including a first component and a second phase, immiscible with the first phase, including a second component. The first and second phases define interphase boundaries between them, and at least one particle is positioned between a first phase and a second phase at an interphase boundary. When the first and second phases are electronically-conductive and ionically-conductive polymers, respectively, and the particles are ion host particles, the arrangement is an electrode of a battery.
Owner:MASSACHUSETTS INST OF TECH

Methods of preparing cathode active materials for lithium secondary battery

The LixMn2O4 powder for cathode active material of a lithium secondary battery of the present invention is prepared by a method of comprising the steps of mixing an acetate aqueous solution using Li acetate and Mn acetate as metal precursors, and a chelating agent aqueous solution using PVB, GA, PAA or GC as a chelating agent; heating the mixed solution at 70 DIFFERENCE 90 DEG C. to form a sol; further heating the sol at 70 DIFFERENCE 90 DEG C. to form a gel precursor; calcining the produced gel precursor at 200 DIFFERENCE 900 DEG C. for 5 DIFFERENCE 30 hours under atmosphere. The cathode active material, LixMn2O4 powder for a lithium secondary battery in accordance with the present invention has a uniform particle size distribution, a high crystallinity and a pure spinel-phase, and a particle size, a specific surface area, a lattice of a cubic structure and the like can be controlled upon the preparing conditions. The present invention also provides a method of preparing LiNi1-xCoxO2 powder, which comprises the steps of providing a gel precursor using PAA as a chelating agent and hydroxide, nitrate or acetate of Li, Co and Ni as metal precursors; heating the gel precursor at 200 DIFFERENCE 900 DEG C. for 5 DIFFERENCE 30 hours to form a powder. The LixMn2O4 and LiNi1-xCoxO2 powder of the present invention can be used for a cathode active material of a lithium secondary battery such as a lithium ion battery or lithium polymer battery.
Owner:SAMSUNG DISPLAY DEVICES CO LTD

Method for preparing lithium hydroxide and lithium carbonate by utilizing soluble lithium-salt solution

The invention discloses a method for preparing lithium hydroxide and lithium carbonate by utilizing a soluble lithium-salt solution. The method comprises the following steps: the soluble lithium-salt solution is used as a raw material to produce the battery-level lithium hydroxide, and a lithium hydroxide solution is utilized to produce the high-purity lithium carbonate. The method is characterized in that various soluble lithium-salt solutions (the lithium solutions are expressed as LiX in the description) can be utilized, and a bipolar membrane electrodialyzer is applied to treat the soluble lithium-salt solutions, so that a higher-concentration LiOH solution and a corresponding HX acidic solution are obtained; the HX acidic solution returns to a previous-stage process for preparing the lithium salt solution; and the LiOH solution is subjected to evaporation concentration and crystallization to obtain the battery-level lithium hydroxide solid, and the produced lithium hydroxide solution can be further reacted with a carbon dioxide gas through a gas-liquid reactor, so that the high-purity lithium carbonate is obtained. The method can realize continuous stable production with low energy consumption, free pollution and large scale, and realize low-cost and high-efficiency manufacture of the battery-level lithium hydroxide and the high-purity lithium carbonate.
Owner:JIANGSU LITHITECH CO LTD

Positive electrode material of manganese series, and preparation and usage thereof

The invention relates to manganese department positive electrode material of a lithium secondary battery, which can combine with electrolyte solution or solid electrolyte, and negative electrode active material to form lithium secondary battery. Its characteristics are: the positive electrode material of lithium secondary battery is LiMn1-x-y NixMyO2(x is not less than 0.2 and not larger than 0.8, y is not less than 0 and not larger than 0.6, and x+y is not larger than 1.), M is chosen from Li, Mg, Co, Ni, Fe, Al, Cr. The manufacturing method for manganese department positive electrode material of the lithium secondary battery, includes preparation of usher containing Mn; decorate to the covering of usher particle containing Mn; mix with lithium salt and prepare particle; sintering and other steps. By decoration of the surface of particle to usher 6 of positive electrode containing Mn or active material itself, state of material or apparent condition of material can be changed and its capacity of powerful charge and discharge, cycle performance and thermal stability can be raised. The invention has notable advantages including low cost, capacity of powerful charge and discharge, super-long cycle performance, excellent safety, super-long circulation property and resistance to overcharge .
Owner:INST OF PHYSICS - CHINESE ACAD OF SCI

Production method of high-purity lithium hydroxide

The present invention relates to a production method of high-purity lithium hydroxide. A crystallization mother liquor waste water is obtained after production of potassium chloride by using a salt lake bittern as the raw material, a magnesium-lithium ratio of the crystallization mother liquor waste water is 200-500:1, an eligible eluant is obtained through ion sieve adsorption and elution of the crystallization mother liquor waste water, and after treatment of the eluant through the ultrafiltration membrane technology, the sectional type nanofiltration technology, the external regeneration continuous hybridization technology and the reverse osmosis technology, a reverse osmosis concentrated solution is obtained. In the reverse osmosis concentrated solution, the content of magnesium ions is <=300 ppm, the content of lithium ions is 4-6 g / L, the content of sodium ions is 3-5 g / L, the content of calcium ions is <=5 ppm, the content of sulfate ions is 1-30 ppm and the content of boron is <=400 ppm. According to the production method provided by the present invention, the reverse osmosis concentrated solution is used as the raw material, the process comprises ultrahigh pressure reverse osmosis continuous hybridization for boron-removing, continuous hybridization for sulfate radical removing, ion-exchange membrane electrolysis, and crystallizing evaporation, and by using the hybridization boron-removing technology, the ion-exchange membrane electrolysis technology and the crystallizing evaporation technology, the high-purity lithium hydroxide is obtained, with the byproducts being the boric acid and sodium hydroxide. The process is continuous, controllable, high in extraction rate, low in production cost and easy to industrialize.
Owner:启迪清源(上海)新材料科技有限公司

High-density spherical lithium nickel cobalt manganese oxygen and method for preparing the same

The invention relates to a high density spherical shape LiNixCoyMn(1-x-y)O2 and a preparation method thereof, and belongs to the products of chemical industry, in particular to the preparation of the high density spherical shape LiNixCoyMn(1-x-y)O2 which is mainly used for manufacturing a lithium ion battery. Firstly, a high density spherical shape nickel cobalt and manganese predecessor body is synthesized by controlling the synthetic technology, secondly, the high density spherical shape nickel cobalt and manganese predecessor body is mixed with a lithium source and then is calcined under the specified conditions, so the high density spherical shape LiNixCoyMn(1-x-y)O2 can be obtained. The LiNixCoyMn(1-x-y)O2 is a spherical shape crystal, the mean grain size is 3-20 micrometers, the loose packed density is more than or equal to 1.0g/cm<3>, and the tap density is more than or equal to 2.0g/cm<3>. The synthesized LiNixCoyMn(1-x-y)O2 is of a single spherical shape, has better tap density, and can improve the volume ration capacity of the battery. The LiNixCoyMn(1-x-y)O2 is formed by calcining the predecessor body which has a spherical shape particle, high density, and complete crystalline form structure, compared with the synthetic technology of the predecessor body, the preparation method is simple, the cost is low, and the particle size can be controlled, and the industrialization is easy.
Owner:GUANGZHOU RONGJIE MATERIAL TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products