Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

65results about How to "Easy process integration" patented technology

3D NAND memory device and manufacturing method therefor

The invention provides a 3D NAND memory device. The memory device comprises a substrate, a first memory region, a sub step region, run-through contact holes, and grid line gaps, wherein the first memory region is arranged on the substrate; the first memory region comprises a word line stacking layer and channel holes in the word line stacking layer; the side wall of the word line stacking layer adopts a step structure; the sub step region is arranged in the step structure; the sub step region is a stacked layer of an oxide layer and a nitride layer; the sub step region extends to the edge of the step structure in a word line direction; an insulating layer is arranged on the side wall, connected with the step structure, of the sub step region; the run-through contact holes are formed in the sub step region; and the grid line gaps are formed in the step structure outside the sub step region. By virtue of the run-through contact holes with the structure, connection between the memory device and a CMOS chip can be realized conveniently, and the memory device can be integrated with the existing process easily; particularly, when the thickness of the stacking layer is constantly increased, a step of etching metal stacking to form the run-through contact holes is not needed, so that realization of the process and constant improvement of the integration degree can be facilitated.
Owner:YANGTZE MEMORY TECH CO LTD

Absorbing layer structure for non-refrigeration long-wave infrared detector

The invention discloses an absorbing layer structure for a non-refrigeration long-wave infrared detector. The absorbing layer is arranged on a heat reactive film of the detector and sequentially composed of a first medium layer, a second metal layer and a third insulating layer from top to bottom. The absorbing layer is characterized in that the first medium layer is a silicon nitride film which is good in thermal-conductivity and high in corrosion resistance, the silicon nitride film is used as an anti-reflecting layer and a component protecting layer, the thickness of the film is 1000-1200nm, the second metal layer is a nickel chrome layer with the thickness being 8-12nm, the second metal layer is used as an absorbing layer of an infrared band, the third insulating layer is a silicon dioxide film with the thickness being 50-100nm, and the silicon dioxide film is used as the insulating layer between the heat reactive film and the metal layer. The absorbing layer is simple in preparation process, compatible with the existing microelectronic process and suitable for unit, alignment and area array infrared detectors. The infrared absorbing layer has the advantages of being firm in adherence, high in resistance to corrosion, good in repeatability, low in specific heat capacity and excellent in heat transfer performance, and has the absorption rate of larger than 85% on the infrared band of 8-14 micrometers.
Owner:SHANGHAI INST OF TECHNICAL PHYSICS - CHINESE ACAD OF SCI

Through silicon via (TSV) filling method

The invention discloses a through silicon via (TSV) filling method. The method comprises the following steps: forming a deep groove or hole; depositing an oxide layer on the side walls and bottom of the deep groove or hole; depositing titanium and titanium nitride; depositing a first layer of tungsten; carrying out back etching on the first layer of tungsten to remove the first layer of tungsten outside the deep groove or hole; depositing a layer of titanium nitride; depositing the second layer of tungsten; carrying out back etching on the second layer of tungsten to remove the second layer of tungsten outside the deep groove or hole; if the deep groove or hole is not filled up, repeating deposition and back etching of the second layer of tungsten until the deep groove or hole is filled up; manufacturing front metal interconnects and a front backend process; thinning the back of a silicon wafer; and forming back metal and manufacturing back metal patterns. The method has the following beneficial effects: through combination of a tungsten filling process and a tungsten etching process, the method can be used for realizing the filling of the TSV with high aspect ratio, can be conveniently integrated with the existing integrated circuit process and can be used for processing by utilizing the existing production equipment; and the process difficulty and cost can be reduced.
Owner:SHANGHAI HUAHONG GRACE SEMICON MFG CORP

Method for copper dual damascene structure having ultralow dielectric constant layer

The invention discloses a method for a copper dual damascene structure having an ultralow dielectric constant layer. The method comprises the steps of providing a substrate; depositing an etching blocking layer, a first interlayer dielectric layer having a low dielectric constant, a first oxidation layer, a metal protection layer, a second oxidation layer and a first bottom anti-reflection layer sequentially on the substrate; etching a first groove and a first through-hole on the etching blocking layer, filling the first groove and the first through-hole with copper, conducting planarization treatment till the first interlayer dielectric layer, and forming a first metal layer; producing a second groove and a third groove on the first interlayer dielectric layer; and filling and depositing an ultralow dielectric constant material on the first groove, the second groove, the first interlayer dielectric layer and the first metal layer, forming a second interlayer dielectric layer, removing the ultralow dielectric constant material which covers the first dielectric layer and the first metal layer, and forming the first layer copper damascene structure. By the aid of the method, the mechanical performance of interlayer dielectric substances is good, and process integration is facilitated.
Owner:SHANGHAI HUALI MICROELECTRONICS CORP

Production device and production method for distribution type plant oil transesterification

The invention discloses a production device and a production method for distribution type plant oil transesterification. The production device comprises an equipment frame, a reaction kettle, a washing tank, a catalyst recovering tank, a drier, a warm water storage tank, a heat conducting oil heating tank, a reaction circulating pump, an air pump, a material pump and a heat conducting oil pump. The production method comprises the following steps of: heating and stirring a mixture of plant fat raw material oil, low-carbon alcohol and a pyridyl trifluoromethanesulfonate ion liquid catalyst to react for 3-5 hours; standing so that reaction materials are divided into a light phase and a heavy phase, and separating the light phase from the heavy phase; standing the heavy-phase material and naturally cooling, so that the catalyst is precipitated to the bottom, and the rest is crude glycerol containing alcohol; adding warm water to the light-phase material for washing, and then standing so that the light phase and the heavy phase are formed again; and pumping the light-phase material into the drier for drying, so as to obtain the plant oil. The production method disclosed by the invention can achieve homogeneous catalysis and different-phase separation through process integration, and the yield of the plant oil is improved; and the production device disclosed by the invention is handy and simple, and is convenient for real-time processing of a dispersed raw material.
Owner:SOUTH CHINA UNIV OF TECH

Method for implementing well division construction in super-high density slot type power device design

The invention relates to a novel method for achieving a Split Well structure in the design of an ultrahigh-density groove-type power device, and is effective in solving the problem that the Split Well structure (21) is incompatible with the ultrahigh-density design. Based on the impurity compensation theory, the method is characterized in that the high-energy N-type ion injection (18) and the quick annealing are carried out through a contact hole (22) so as to ensure that the Split Well structure (21) is formed at the bottom part in the middle of a well area (7). With the contact hole (22) over-etched below a silicon surface (23), the process ensures that the energy demand for sequential N-type ion injections is effectively reduced, thereby reducing the probability of injection damage to the well area (7) with less leakage sources that cause current to leak out from the device. Moreover, a higher integrated level can be attained with the Split Well structure 21 achieved in Z direction. The novel Split Well technology leads to a substantial improvement on the design of the device which ensures the long-standing reliability of the device as well as the workability of the on-resistance of the device, the firmness of the device and the reverse recovery characteristic of the body diode of the device.
Owner:成都方舟微电子有限公司

Low-power consumption single-ended input difference output low-noise amplifier

The invention discloses a low power dissipation single end input difference output low noise amplifier, belonging to radio frequency communication technical field. The amplifier comprises an input matching circuit, a first stage amplifying circuit, a second stage common grid amplifying circuit and a second stage comon source amplifying circuit which are connected with each other, and an output load matching circuit, the input matching circuit is connected with the first stage amplifying circuit, a control circuit is provided between the first stage amplifying circuit and the second stage comon source amplifying circuit, the control circuit is used for controlling direct current flowing to the second stage common grid amplifying circuit to flow to the first stage amplifying circuit, meanwhile, stops the radio frequency signal outputted by the first stage amplifying circuit to flow to the source end of the second stage comon source amplifying circuit, the second stage comon source amplifying circuit and the second stage common grid amplifying circuit are respectively connected with one output load matching circuit. The invention can resuce half of the system power consumption, and the second amplifying circuits are symmetrical, thereby ensuring output noise, phase and gain of the differential signal more symmetrical.
Owner:PEKING UNIV

Low-loss silicon-based filter chip capable of improving reuse rate and manufacturing method thereof

The invention discloses a low-loss silicon-based filter chip capable of improving reuse rate and a manufacturing method thereof. The silicon-based filter chip comprises a high-resistance silicon dielectric layer, a first metal layer, a second metal layer, a third metal layer and a fourth metal layer, the first metal layer is arranged on the top surface of the high-resistance silicon dielectric layer; a silicon cavity is formed in the bottom surface of the high-resistance silicon dielectric layer in a concave manner; the second metal layer is arranged in the silicon cavity; the third metal layer is arranged on the bottom surface of the high-resistance silicon dielectric layer and keeps away from the silicon cavity, the fourth metal layer is arranged on the bottom surface of the third metallayer, a through hole penetrating through the first metal layer upwards is formed in the high-resistance silicon dielectric layer, a metal deposition layer is arranged on the inner wall of the throughhole, and production is carried out through etching and micromachining processes. With application of the mode, the low-loss silicon-based filter chip capable of improving the reuse rate and the manufacturing method thereof are convenient to produce, the out-of-band rejection degree of the silicon-based filter chip is improved, loss is reduced and the reuse rate is high.
Owner:昆山鸿永微波科技有限公司

Capacitance-free dynamic random access memory structure and preparation method thereof

The invention discloses a capacitance-free dynamic random access memory structure and a preparation method thereof. Under the premise that the capacitance-free dynamic random access memory structure meets high voltage leakage requirements for a high impact ionization rate, the electrical thickness of a gate medium in a source drain junction area is increased via adoption of different gate medium materials or gate medium thicknesses near the area, an electric field in the vertical direction is reduced effectively. Meanwhile, a thin oxidation layer or a high K material is adopted in the central area of a channel, the gate control capability is improved, and the short channel effect is inhibited. By adopting the structure, the degradation of the gate medium can be inhibited effectively, the reliability (durability) of a storage unit can be improved, the scaling-down of a device can be facilitated, and the complex process for the capacitance structure in the conventional 1T1C structure can be avoided completely in the capacitance-free structure. The adopted manufacturing process is completely compatible with the conventional logic process, and the high-density three-dimensional process integration can also be facilitated.
Owner:宁夏储芯科技有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products