Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

269 results about "Soda-lime glass" patented technology

Soda–lime glass, also called soda–lime–silica glass, is the most prevalent type of glass, used for windowpanes and glass containers (bottles and jars) for beverages, food, and some commodity items. Glass bakeware is often made of borosilicate glass. Soda–lime glass accounts for about 90% of manufactured glass.

High strength aluminosilicate glass and chemically toughening process thereof

ActiveCN101337770AMeet the screen saver functionProtective functionGlass tempering apparatusAlkali freeShock resistance
The invention relates to a high-strength aluminate silicate glass and a chemical toughening method thereof, and belongs to the silicate glass field. The glass comprises the following chemical components (weight percent): 55 to 65 weight percent of SiO2, 0.1 to 3 weight percent of B2O3, 6 to 24 weight percent of Al2O3, 3 to 9 weight percent of MgO plus CaO plus BaO plus SrO, 0 to 1 weight percent of ZrO2, 0 to 2 weight percent of ZnO, 0.1 to 0.5 weight percent of Cl2, 0.1 to 1.0 weight percent of Sb2O3, 0.1 to 0.5 weight percent of SO3 and 0.1 to 0.5 weight percent of F2, and belongs to a aluminate silicate glass system. The high-strength aluminate silicate glass is prepared through a known plate glass production method, and then is subjected to the strengthening treatment by adopting the chemical toughening method. The glass has high permeability of visible light, and relatively common soda lime glass, neutral medicine glass and alkali-free high-aluminum glass have good shock resistance property, high scratch resistance property and high durability. The high-strength aluminate silicate glass is applied to the screen surface protection of plasma display products and liquid crystal display products, the protection of touch screens, the screen protection of automated teller machines, and the screen protection of other electronic products (Mobile phones, PDAs and media machines, etc.), thereby effectively preventing the impact and the scratch damage to the glass surface of display products. The high-strength aluminate silicate glass contains no harmful elements.
Owner:SUZHOU SHINWU OPTRONICS TECH

Method of manufacturing chemically strengthened glass plate

[Subject]
An object of the present invention is to provide a method for manufacturing a chemically strengthened glass plate having a high surface compressive stress with high efficiency using a soda-lime glass, the composition of which is not particularly suited for chemical strengthening.
[Solution]
The present invention provides a method of manufacturing a chemically strengthened glass plate by ion-exchanging a glass base plate to replace alkali metal ions A that are the main alkali metal ion component of the glass base plate with alkali metal ions B having a larger ionic radius than the alkali metal ions A at a surface of the glass base plate,
    • the unexchanged glass base plate made of a soda-lime glass,
    • the method including:
    • a first step of contacting the glass base plate with a first salt containing the alkali metal ions A, the first salt containing the alkali metal ions A at a ratio X, as expressed as a molar percentage of total alkali metal ions, of 90 to 100 mol %;
    • a second step of contacting the glass plate with a second salt containing the alkali metal ions B after the first step, the second salt containing the alkali metal ions A at a ratio Y, as expressed as a molar percentage of the total alkali metal ions, of 0 to 10 mol %; and
    • a third step of contacting the glass plate with a third salt containing the alkali metal ions B after the second step, the third salt containing the alkali metal ions B at a ratio Z, as expressed as a molar percentage of the total alkali metal ions, of 98 to 100 mol %.
Owner:CENT GLASS CO LTD

Full-laser grooving and scribing method of large-area copper indium gallium selenide (CIGS) thin-film solar cell assembly

The invention provides a full-laser grooving and scribing method of a large-area copper indium gallium selenide (CIGS) thin-film solar cell assembly. The method comprises steps of using a laser to groove and scribe a molybdenum thin film prepared on soda-lime glass so as to form a first scribed line (P1); successively preparing a CIGS layer, a cadmium sulfide layer and an intrinsic zinc oxide layer on the molybdenum layer where the P1 has been grooved and scribed; after finishing the above film layer preparation, using a laser to perform grooving and scribing so as to form a second scribed line (P2) which is parallel to the P1; and after preparing an aluminum-doped zinc oxide layer on the intrinsic zinc oxide layer where the P2 has been grooved and scribed, using a laser to perform grooving and scribing so as to form a third scribed line (P3) which is parallel to the P1. According to the invention, inner join is performed for the CIGS thin-film solar cell assembly by the laser grooving and scribing method, so defects of large area of dead zones and frequency change of machinery needles in traditional machinery grooving and scribing technology can be overcome, thereby increasing efficiency of the assembly, improving stability of the grooving and scribing device and achieving objectives to reduce production cost and improve production efficiency.
Owner:BEIJING SIFANG JIBAO AUTOMATION

Preparation method of ropivacaine mesylate injection packed by soda-lime glass bottle

The invention relates to a preparation method of ropivacaine mesylate injection packed by a soda-lime glass bottle, which comprises the following processing steps of ingredient preparation, liquor preparation, soda-lime glass bottle and rubber plug cleaning, filling, capping, sterilization, lamp test, labeling, packing and finished product inspection. The injection is subject to a filtration sterilization processing step once and a flowing steam sterilization processing step once, wherein microorganisms larger than 0.22 microns in liquid medicine are removed by a filter method, microorganismssmaller than 0.22 microns are killed by flowing steam sterilization, and insoluble particles in the liquid medicine are removed during filtration sterilization simultaneously, thereby greatly reducingthe occurrence of phlebitis; and the invention is packed by the soda-lime glass bottle which has the advantages of heat resistance, acid and alkali resistance, large strength, and the like, thereby ensuring the stability of the medicine. Clinic comparison tests show that the ropivacaine mesylate injection packed by a soda-lime glass bottle has the advantages of quicker effect, long action time, reliable anesthetic effect, small toxicity to heart, separate blocking pf sensory and motor nerves, and the like, thereby being suitable for anesthesia in surgeries and postoperative analgesia.
Owner:陕西吉尾斯美业有限公司

Microfluidic array chip for cell capture

InactiveCN103387935AWith micro volumeFlexible and customizable structureBioreactor/fermenter combinationsBiological substance pretreatmentsMicro structureCancer cell
The invention relates to a microarray-type structure chip adopting micro-flow pipes and taking advantage of diameter difference of different types of cells, and micro column arrays with different intervals and different sizes are etched in the micro-flow pipes. The chip structure is formed by up-down bonding of a silicon Si material negative-film substrate and a soda-lime glass upper cover. According to the different intervals of the column micro structure, the microarray-type structure chip can be divided into two series: variable interval and fixed interval; and according to the different sizes of the column micro structure, the microarray-type structure chip can be divided into a plurality of types: ranging from 2-30 [mu] m. The microarray-type structure chip is characterized in that: when a liquid fluid containing the different types of cells flows through the chip micro structure, and passes through the column microarrays with different intervals and diameters, different types (different sizes) of cells can be captured by different micro column array structures, and retained on the different micro column arrays with different micro structures in the pipes, and the captured results can be observed and analyzed by used of a microscope. The microarray-type structure chip has the characteristics of micro volume, flexible and customizable structure, no moving parts and the like, and can be widely applied to capture and analysis and other fields of various cancer cells in the blood, and comprehensive analysis and measuring and calculating determine of the cell type and quantity in the blood of patients can be conducted through use of different kinds of chips.
Owner:PEOPLES LIBERATION ARMY ORDNANCE ENG COLLEGE

Ferrous disulfide semiconductor film preparation method

ActiveCN102642874AThickness is easy to controlEasy for large-scale continuous productionIron sulfidesVulcanizationIron(II) chloride
The invention discloses a ferrous disulfide semiconductor film preparation method, which relates to the field of preparation of compound semiconductor films for solar cells and the like. The method includes: by an aqueous solution deposition method, using ferrous sulfate or ferrous chloride aqueous solution as cation precursor solution, and using sodium polysulfide aqueous solution as anion precursor solution; controlling immersion time of a substrate in the precursor solution and circulation times to deposit a ferrous disulfide film premade layer; and subjecting the premade layer to vulcanization heat treatment at the high temperature to obtain a ferrous disulfide film. The ferrous disulfide semiconductor film preparation method is short in procedure, low in cost, high in reproducibilityand easy in massive continuous production, and the film is controllable in component and suitable for large-area growth. The deposition substrate can be normal soda lime glass, conductive glass, flexible stainless steel plates, titanium plates, molybdenum plates or plastic plates. The film prepared by the method is controllable in thickness and component, compact and uniform in appearance, high in crystallizing performance and photoelectric property and applicable to thin film solar cells.
Owner:CENT SOUTH UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products