Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

69results about How to "Reaction conditions green" patented technology

Green conjugated double bond reduction method

The invention relates to a green conjugated double bond reduction method capable of taking water as a solvent and dihydropyridine ester as a hydrogen source, and selectively reducing the conjugated double bond with strong electron-withdrawing groups. By adopting the method, conjugated carbon-carbon double bonds with strong electron-withdrawing groups are selectively reduced by taking water as the solvent and the dihydropyridine ester as the hydrogen source under the condition that no catalyst is needed. The method comprises the following steps: (1) adding a compound of conjugated carbon-carbon double bonds with strong electron-withdrawing groups and the dihydropyridine ester to water according to the molar ratio of (1:1) to (1:3), heating and warming to 60-100 DEG C; stirring and reacting for 5-24 hours at the temperature; (2) adding an organic solvent to the solution obtained in the step (1) to extract for at least three times according to the volume ratio of 2:5; (3) merging, drying and carrying out reduced pressure distillation on an organic layer of the product obtained in the step (2), and then carrying out column chromatography, so as to obtain the reduced product. The green conjugated double bond reduction method has the advantages of being non-toxic, mild in reaction condition, free of adding of a catalyst, high in chemical selectivity and the like.
Owner:无锡富泽药业有限公司

Method for synthesizing dihydrofuran containing 1, 3-indandione spiro skeleton by using micro-channel reaction device

The invention discloses a method for synthesizing a dihydrofuran compound containing a 1, 3-indandione spiro skeleton as shown in a formula III by using a micro-channel reaction device, which comprises the following steps: by using a 2-benzylidene-1, 3-indandione compound I and a benzoyl ethyl acetate compound II as reaction raw materials, carrying out continuous reaction by using the micro-channel reaction device to prepare the dihydrofuran compound containing a 1, 3-indandione spiro skeleton. The micro-channel reaction device comprises a feeding pump, a micro-mixer and a micro-reactor whichare sequentially connected through a pipeline. Compared with the prior art, the new dihydrofuran containing the 1, 3-indandione spiro skeleton is prepared by taking the 2benzylidene 1, 3-indandione compound as the substrate for the first time, and the method avoids multi-component reaction, uses a non-metal catalyst and a low-toxicity solvent, and is a quick, efficient, green and environment-friendly synthetic product, wherein R1 is selected from halogenated benzene, C1-C4 alkyl benzene, C1-C4 alkoxy benzene, nitrobenzene, furan or naphthalene, and R2 is selected from halogenated benzene, C1-C4 alkyl benzene, C1-C4 alkoxy benzene, nitrobenzene, furan, thiophene, pyridyl or naphthalene.
Owner:NANJING ADVANCED BIOLOGICAL MATERIALS & PROCESS EQUIP INST CO LTD

Method for preparing 5-formyloxy methylfurfural from fructose

The invention discloses a method for preparing 5-formyloxy methylfurfural from fructose, and relates to 5-formyloxy methylfurfural. The method specifically comprises the following steps of mixing the fructose and choline chloride into a reaction container, using hydrochloric acid as a catalyst, using a polarity organic solvent as a reaction extracting agent, and heating to react; after reaction is finished, naturally cooling, fetching out reaction liquid, adding a certain amount of anhydrous formic acid into the reaction liquid, and continuing to heat to react; after reaction is finished, relieving pressure and distilling to remove the solvent, using the extracting agent to continuously extract the residues, combining the extracting agent, and relieving pressure and distilling to recycle the extracting agent; under the certain condition, distilling the residual liquid, using a saturated sodium bicarbonate water solution to wash distilling matter, and drying anhydrous magnesium sulfate, so as to obtain the 5-formyloxy methylfurfural with purity more than 99%. The method has the advantages that the reaction condition is mild, the reaction system is green and recyclable, the feeding amount is high, the yield rate is high, a new path is provided for preparation of the 5-formyloxy methylfurfural, and the added value of biomass raw materials is further improved.
Owner:XIAMEN UNIV

Beta-halogenated enamine acid ester compound and preparation method thereof

The invention discloses a beta-halogenated enamine acid ester compound and a preparation method thereof. The structure of the beta-halogenated enamine acid ester compound is shown as a formula I whichis described in the specification. In the formula I, R1 and R2 are selected from alkyl groups, morpholine, pyrrole, benzyl groups and hydrogen; X is Br or Cl; and EWG is an electron withdrawing group. The preparation method comprises the following steps: sequentially mixing dimethylformamide, an alkyne-terminated compound and secondary amine or derivatives thereof, carrying out stirring, mixing and sufficient reacting, adding triethylene diamine and N-halogenated imide, carrying out stirring and sufficient reacting at 0-50 DEG C, performing quenching with saturated edible salt water, and allowing a quenched product to pass through a column for purification so as to obtain the beta-halogenated enamine acid ester compound. According to the method, the enamine acid ester compound with high activity is prepared by utilizing metal catalysis-free multi-component reactions, operation is simple and convenient, assembly efficiency is high, automation can be easily realized, and the used raw materials are cheap and easy to obtain; and the method has the advantages of simple, mild and green reaction conditions and good substrate applicability, and can realize high yield in virtue of most amino compounds (especially the secondary amine).
Owner:JIANGSU UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products