Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

36 results about "Mn doping" patented technology

Method for preparing binary alternatively-doped BST membrane

The invention discloses a method for preparing a binary alternatively-doped BST membrane, belongs to the technical field of functional materials, and relates to a method for preparing a nanocrystalline BST membrane. The method adopts binary doping of Mn and Y, namely, carries out Mn or Y doping on an odd layer membrane and carries out Y or Mn doping on an even layer membrane; and the method adds a pre-crystallization processing step between cooling and crystallization steps. The membrane prepared by the method is smooth and compact with no crack or shrinkage cavity, and can greatly enhance the comprehensive dielectric tuning performance of the nanocrystalline BST membrane; and the obtained nanocrystalline BST membrane has a dielectric tuning rate of over 30.0 percent, a dielectric loss of less than 2.0 percent, a K factor of greater than 15.5, a high dielectric strength and a stable frequency characteristic and a temperature characteristic. The nanocrystalline BST membrane prepared by the method can be used for preparing a microwave tuning device (such as a phase shifter) instead of a ferrite and a semiconductor so as to remarkably reduce the manufacturing cost of the microwave tuning device; and furthermore, the nanocrystalline BST membrane prepared by the method is applicable for magnetic recording, pyroelectric focal plane arrays and the like.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA

Electric field-regulated selective crystallization synthesized double perovsNaite sodium ion battery negative electrode material and preparation method thereof

The invention discloses an electric field regulated selective crystallization synthesized double perovsNaite sodium ion battery negative electrode material and a preparation method thereof. The material is characterized in that the composition of the negative electrode material is NaBa0.3La0.3K0.4Zr0.8Ni0.1Mn0.1MoO6, an electric field having a specific direction is applied during a high-temperature solid phase reaction in the preparation process to change the crystal characteristics of lattice defect crystals and grow cylindrical particles along the direction of the electric field; the non-uniform crystallization on the surfaces of the cylindrical particles maNaes a sintering aid non-uniformly adhered to the position having a large surface curvature radius and partially bonded to form a continuous porous morphology, and the morphology is in favor of reducing the crystal boundary resistance and the electron migration resistance and accelerating the migration ability of sodium ions in an electrolyte and crystal lattices and the oxidation reduction reaction rate; the material also has a certain structure rigidity, so the volume change of the material in the charge and discharge process is buffered; and the high-performance sodium ion battery negative electrode material is formed through the co-occupation of Na and La in an A position, the Ba and K doping in a La position and the Ni and Mn doping in a B position.
Owner:HAIMEN THE YELLOW SEA ENTREPRENEURSHIP PARK SERVICE CO LTD

Double-perovskite lithium-ion battery anode material synthesized through electric field regulated selective crystallization and preparation method of anode material

The invention discloses a double-perovskite lithium-ion battery anode material synthesized through electric field regulated selective crystallization and a preparation method of the anode material. The anode material is characterized in that the composition of the anode material is Na0.8Ba0.2Y0.9Li0.1Co0.9Zn0.1Nb0.9Mn0.1O6. The crystallization characteristic of crystals with lattice imperfection is changed by use of an applied electric field in the specific direction in a high-temperature solid-phase reaction during preparation, and cylindrical particles are formed through growing in the electric field direction; meanwhile, parts, with high surface curvature radiuses, of cylindrical particles unevenly adhere to a sintering aid to partially be adhered into continuous porous morphology. The morphology is beneficial to reduction of crystal boundary resistance and electron transfer resistance, increases the lithium-ion migration capacity and the redox reaction rate and has certain structure rigidity to form buffer for volume change; the lithium-ion battery anode material with high performance is formed through Na and Y co-occupation in position A, Ba doping in position Na, Li doping in position Y and Zn and Mn doping in position B.
Owner:HAIMEN THE YELLOW SEA ENTREPRENEURSHIP PARK SERVICE CO LTD

A negative electrode material for double perovskite lithium-ion batteries synthesized by selective crystallization controlled by electric field and its preparation method

The invention discloses a double-perovskite lithium-ion battery anode material synthesized through electric field regulated selective crystallization and a preparation method of the anode material. The anode material is characterized in that the composition of the anode material is Na0.8Ba0.2Y0.9Li0.1Co0.9Zn0.1Nb0.9Mn0.1O6. The crystallization characteristic of crystals with lattice imperfection is changed by use of an applied electric field in the specific direction in a high-temperature solid-phase reaction during preparation, and cylindrical particles are formed through growing in the electric field direction; meanwhile, parts, with high surface curvature radiuses, of cylindrical particles unevenly adhere to a sintering aid to partially be adhered into continuous porous morphology. The morphology is beneficial to reduction of crystal boundary resistance and electron transfer resistance, increases the lithium-ion migration capacity and the redox reaction rate and has certain structure rigidity to form buffer for volume change; the lithium-ion battery anode material with high performance is formed through Na and Y co-occupation in position A, Ba doping in position Na, Li doping in position Y and Zn and Mn doping in position B.
Owner:HAIMEN THE YELLOW SEA ENTREPRENEURSHIP PARK SERVICE CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products