Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

194 results about "Spintronics" patented technology

Spintronics (a portmanteau meaning spin transport electronics), also known as spin electronics, is the study of the intrinsic spin of the electron and its associated magnetic moment, in addition to its fundamental electronic charge, in solid-state devices. The field of spintronics concerns spin-charge coupling in metallic systems; the analogous effects in insulators fall into the field of multiferroics.

Titanium dioxide nano thread, belt and tube block array and preparation method thereof

The present invention provides a titanium dioxide nanometer thread, strip and tube block array, and a preparation method of the same, which relates to a nanometer material and a preparation method of the same. A high purity titanium foil serves as a substrate; a mixture solution of ethylene glycol and fluorination ammonification with a content of 0.1~0.5 wt%; a titanium dioxide nanometer thread, strip and pipe block array, which has a nanometer thread, strip blended fasciculation substance of 1~20 micron at the upper end and a regular nanometer tube array at the lower part, is formed vertically at the substrate by constant pressure anodisation. The preparation method comprises the steps of that: the substrate serves as the anode, the platinum serves as the cathode, the distance between the anode and the cathode is 10~50 mm, the voltage is 10~60 V, the reaction time is 30~3000 min; the obtained product is roasted for 1~3 hours at 240~600 DEG C, and is cooled in the furnace, thereby the titanium dioxide nanometer thread, strip and tube block array is obtained. The method has a simple equipment, an excellent repetitiveness for technology, a steady quality of product, and can be used for the fields of photocatalysis, photolysis water, solar cell and spinning electron.
Owner:NANJING UNIV OF AERONAUTICS & ASTRONAUTICS

Preparation method of ultrathin graphite phase carbon nitride

The invention provides a preparation method of ultrathin graphite phase carbon nitride. The preparation method comprises steps as follows: melamine is calcined firstly, and blocky g-C3N4 is obtained; blocky g-C3N4 is uniformly dispersed in deionized water and subjected to ultrasonication; a product obtained after ultrasonication is subjected to centrifugal separation, and solids are collected and dried; finally, a dried product is calcined again, and a target product is obtained. According to the preparation method of ultrathin graphite phase carbon nitride, mass preparation and thickness regulation of ultrathin g-C3N4 with the thickness of 0.8-1.2 nm equal to the thickness of 3-4 atom layers are realized, no organic solvent or toxic chemical reagent participates in a reaction process, so that the problems of structure defects and environmental pollution which are caused by introduction of impurities can be effectively solved, and on the basis of the non-toxic characteristic of prepared g-C3N4, the preparation method can be widely applied to photocatalysis, electro-catalysis, biosensing, bioimaging and spintronics. The whole preparation process is simple to operate, high in controllability, good in repeatability, green, environment-friendly and suitable for large-scale production.
Owner:XI AN JIAOTONG UNIV

Fluorenyl windmill grid material and preparation and application method thereof

The invention relates to a fluorenyl windmill grid material and a preparation and application method thereof, and belongs to the field of organic molecular materials and high and new photoelectric technologies. The fluorenyl windmill grid material is cyclic oligomer with fluorenyl micromolecules as monomers, and the specific general structural formula is shown in the description. The material has the advantages that the fluorenyl windmill grid material has both porous characteristics and semiconductor photoelectric characteristics; raw materials are cheap and easy to obtain, reaction conditions are mild, and operation is easy; the fluorenyl windmill grid material has good mechanical properties of a nanomaterial; the fluorenyl windmill grid material has good solubility, and nanofilm processing or fibration processing is facilitated; with a rigid framework, the fluorenyl windmill grid material is high in glass transition temperature, high in thermal stability, electrochemical stability and spectrum stability and the like. Thus, the fluorenyl windmill grid material is expected to become a new-generation practical organic micromolecular photoelectric material and has good application prospects in the fields of organic electronics, spintronics, optoelectronics, mechatronics, nanobiology and the like.
Owner:NANJING UNIV OF POSTS & TELECOMM

Regulation and control method based on energy valley polarization characteristic of two-dimensional transition metal chalcogenide

ActiveCN110335819AGive full play to flexibilityAvoid the problem of destroying the characteristics of the two-dimensional material itselfVacuum evaporation coatingSemiconductor/solid-state device manufacturingChemical compoundChalcoides
The invention relates to a regulation and control method based on the energy valley polarization characteristic of a two-dimensional single-layer transition metal chalcogenide. The method comprises the following steps of: (1) growing a two-dimensional single-layer transition metal chalcogenide on a substrate by adopting a chemical vapor deposition method; (2) preparing two-dimensional ferromagnetic metal by adopting a mechanical stripping method; and (3) transferring the two-dimensional ferromagnetic metal to the two-dimensional single-layer transition metal chalcogenide in an aligning mannerthrough an aligning transfer platform to form a two-dimensional single-layer transition metal chalcogenide-two-dimensional ferromagnetic metal heterostructure. The heterostructure is formed by the two-dimensional ferromagnetic metal material and the two-dimensional single-layer transition metal chalcogenide, so that the characteristics of flexibility and atomic-level thinness of the two-dimensional material can be fully exerted, the problem that the characteristics of the two-dimensional material are damaged due to the three-dimensional-two-dimensional heterostructure formed by the traditionalferromagnetic metal material and the two-dimensional material is effectively solved, and the regulation and control method based on the energy valley polarization characteristic of a two-dimensionalsingle-layer transition metal chalcogenide can be applied to development and research of ultrathin microminiaturization, flexible spintronics, energy valley electronic devices and the like.
Owner:HANGZHOU DIANZI UNIV

Method for improving spin-orbit coupling strength of Co/Pt thin film material

The invention discloses a method for improving spin-orbit coupling strength of a Co / Pt thin film material, and belongs to the field of magnetic materials. The method comprises the following steps: performing prestretching treatment, surface polishing and surface argon ion bombardment on a titanium-nickel TiNi memory alloy substrate; depositing [Cobalt Co / Platinum Pt] n multilayer films on the TiNi memory alloy substrate; after deposition, performing two-step thermal treatment on the substrate in a vacuum environment, namely low temperature treatment and high temperature treatment, triggering the shape memory effect of the substrate, and meanwhile inducing the crystallized Co / Pt multilayer films to epitaxially grow on the TiNi substrate; at last, cooling the substrate to the room temperature. According to the method disclosed by the invention, the cheap shape memory alloy is used as the substrate, then uniform and controllable high elastic stress is generated on the spintronic thin-film material, and then the spin-orbit coupling strength of the whole thin film can be effectively enhanced; the method is free of high-cost rare metals or an expensive additional device, has the advantages of being high in efficiency, low in cost, simple to prepare and the like, and can be applied to the spintronic technology in the future.
Owner:UNIV OF SCI & TECH BEIJING
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products