Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

41 results about "Perylenetetracarboxylic diimide" patented technology

Synthetic method and micrometer wire preparation method of perylene bisimide derivative

The invention relates to a synthetic method and a micrometer wire preparation method of a perylene bisimide derivative. The synthetic method of the perylene bisimide derivative comprises the step of dissolving 1-NO2-3,4 and 9,10-perylene tetracarboxylic acid imidodicarbonic diamide into a polarity organic solvent, stirring and reacting for 4 to 6h at the temperature of 150 to 180 DEG C, dropping a solution after reacting into diluted hydrochloric acid, separating out precipitation, filtering, washing, drying and purifying to obtain a product. Dissolving the perylene bisimide derivative into a chloroformic solution, and preparing into 2x10<-3>mol/L of concentrated solution, taking 2mL of the to-be-used concentrated solution into a test tube, injecting 3 to 5mL of methanol solution into the test tube, and standing for one day, so as to obtain the micrometer wire corresponding to the perylene bisimide derivative. The synthetic method of the compound is simple, the cost is relatively low, the reaction is finished by one step, and the product purity is relatively high. An oxygen atom five-membered ring is introduced in a bay position, so that the conjugate pi system of the plane part of a perylene molecule is increased, and the acting force among the perylene molecules is changed, so that the preparation of the micrometer wire is realized.
Owner:SHANDONG JIANZHU UNIV

Mitochondrion 3,4,9,10-perylenetetracarboxylic dianhydride targeting fluorescent probe and application thereof

The invention discloses a mitochondrion 3,4,9,10-perylenetetracarboxylic dianhydride targeting fluorescent probe and an application thereof. The molecular formula of the mitochondrion 3,4,9,10-perylenetetracarboxylic dianhydride targeting fluorescent probe is C104H108Br2N4O18P2, and the molar mass of the fluorescent probe is 1923.74. The mitochondrion 3,4,9,10-perylenetetracarboxylic dianhydride targeting fluorescent probe is characterized in that two sides of a fluorophore 3,4,9,10-perylenetetracarboxylic diimide are connected with two water-soluble PEO chains, and the hydrophilicity of the probe is improved greatly; by means of presence of a linking group, the whole conjugate plane is enlarged, and the fluorescence property of the probe is improved; a triphenylphosphine cation is introduced to the position of the linking group, so that the linking group serving as a targeting group can be specifically bound to the mitochondrion. The invention further provides the application of the mitochondrion 3,4,9,10-perylenetetracarboxylic dianhydride targeting fluorescent probe in living cell imaging and provides an application method of the mitochondrion 3,4,9,10-perylenetetracarboxylic dianhydride targeting fluorescent probe. Experiments prove that the fluorescent probe enters cells easily, is good in cell uploading rate and good in cell permeability and cannot produce cytotoxicity.
Owner:HEBEI UNIVERSITY

Inorganic/organic semiconductor nano-composite structure and preparation method and application thereof

The invention discloses an inorganic/organic semiconductor nano-composite structure and a preparation method and an application thereof. The preparation method comprises the following steps: etching and cleaning a titanium foil serving as a substrate to obtain a titanium substrate, obtaining an inorganic semiconductor TiO<2> nanotube array on the surface of the titanium substrate by means of a positive electrode oxidation method; and depositing a layer of perylenetetracarboxylic diimide organic semiconductor film on the surface of the TiO2 nanotube array serving as a growing substrate through a physical vapor deposition method to obtain the inorganic/organic semiconductor nano-composite structure. Meanwhile, nano-composite structures with different organic film deposition amounts can be realized by changing the substrate position of the TiO<2> nanotube array. The method is simple and feasible, and an experimental basis is laid for a hierarchical assembly of inorganic and organic semiconductor materials. As proved by a result of research on the application of the obtained nano-composite structure in the field of photocatalytic hydrogen production by water decomposition of photo-electrochemical cells, the structure has efficient photocatalytic performance.
Owner:UNIV OF SCI & TECH BEIJING

Organic light-emitting superlattice film as well as preparation method and application thereof

The invention discloses an organic light-emitting superlattice film and a preparation method and application thereof, and belongs to the field of organic semiconductor photoelectric materials. The organic light-emitting superlattice film is an organic light-emitting film formed by alternate epitaxial growth of two two-dimensional organic molecules on the surface of a substrate, and the two-dimensional organic molecules are selected from 3,4,9,10-perylenetetracarboxylic dianhydride, N,N'-dimethyl-3,4,9,10-perylenetetracarboxylic diimide, N,N'-dioctyl-3,4,9,10-perylenedicarboximide and 3,4,9,10-Perylenetetracarboxylic diimide. The preparation method comprises the following steps: placing a growth source material of a first two-dimensional organic molecule and a substrate at different positions of a tube furnace, and epitaxially growing a first layer of organic light-emitting film on the surface of the substrate; replacing a growth source material with a second two-dimensional organic molecule, and growing a second layer of organic light-emitting film; and repeatedly replacing the growth source material, and alternately growing multiple layers of organic light-emitting films to obtainthe organic light-emitting superlattice film. The organic light-emitting superlattice thin film has high quality and high light-emitting intensity, and can be used as a light-emitting layer of an organic light-emitting field effect transistor.
Owner:NANJING UNIV

A kind of synthesis of perylene imide derivative and preparation method of micron wire

The invention relates to a synthetic method and a micrometer wire preparation method of a perylene bisimide derivative. The synthetic method of the perylene bisimide derivative comprises the step of dissolving 1-NO2-3,4 and 9,10-perylene tetracarboxylic acid imidodicarbonic diamide into a polarity organic solvent, stirring and reacting for 4 to 6h at the temperature of 150 to 180 DEG C, dropping a solution after reacting into diluted hydrochloric acid, separating out precipitation, filtering, washing, drying and purifying to obtain a product. Dissolving the perylene bisimide derivative into a chloroformic solution, and preparing into 2x10<-3>mol / L of concentrated solution, taking 2mL of the to-be-used concentrated solution into a test tube, injecting 3 to 5mL of methanol solution into the test tube, and standing for one day, so as to obtain the micrometer wire corresponding to the perylene bisimide derivative. The synthetic method of the compound is simple, the cost is relatively low, the reaction is finished by one step, and the product purity is relatively high. An oxygen atom five-membered ring is introduced in a bay position, so that the conjugate pi system of the plane part of a perylene molecule is increased, and the acting force among the perylene molecules is changed, so that the preparation of the micrometer wire is realized.
Owner:SHANDONG JIANZHU UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products