Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

99 results about "Glutamate Dehydrogenase (NADP+)" patented technology

An enzyme that catalyzes the conversion of L-glutamate, H2O, and NADP+ to 2-oxoglutarate, NH3, and NADPH. (From Enzyme Nomenclature, 1992) EC 1.4.1.4.

Nano antibody of clostridium difficile glutamate dehydrogenase, and encoding sequence, screening method and application thereof

The invention provides a nano antibody of clostridium difficile glutamate dehydrogenase, and an encoding sequence, a screening method and the application thereof and belongs to the technical field ofimmunology. The invention provides an amino sequence of the nano antibody of clostridium difficile glutamate dehydrogenase. By using a phage display technology, a sequence with a constant region specific gene is inserted into a vector of a phage encoding coat protein, after recombination expression, an exogenous gene expression product is fused with the phage encoding coat protein and demonstratedon the surface of phage to form a phage demonstration library, phage monocloning of the nano antibody is expressed through screening, and the nano antibody is prepared through sequencing. Phage-ELLSAidentification shows that the phage that the nano antibody is expressed on the surface can be specifically combined with clostridium difficile glutamate dehydrogenase antigen and has a good developing property, the result shows that the nano antibody has a good combination property with glutamate dehydrogenase, therefore, the nano antibody can be adopted to replace a common antibody applied to aclostridium difficile immunodetection kit.
Owner:NINGXIA MEDICAL UNIV

Plants having enhanced yield-related traits and a method for making the same

The present invention relates generally to the field of molecular biology and concerns a method for improving various plant growth characteristics by modulating expression in a plant of a nucleic acid encoding a GDH (Glutamate DeHydrogenase) polypeptide. The present invention also concerns plants having modulated expression of a nucleic acid encoding a GDH polypeptide, which plants have improved growth characteristics relative to corresponding wild type plants or other control plants. The invention also provides constructs useful in the methods of the invention. The present invention relates generally to the field of molecular biology and concerns a method for enhancing various economically important yield-related traits in plants. More specifically, the present invention concerns a method for enhancing yield-related traits in plants by modulating expression in a plant of a nucleic acid encoding a FLA-like (Fasciclin-like) polypeptide. The present invention also concerns plants having modulated expression of a nucleic acid encoding a FLA-like polypeptide, which plants have enhanced yield-related traits relative to control plants. The invention also provides constructs comprising FLA-like- encoding nucleic acids, useful in performing the methods of the invention. The present invention relates generally to the field of molecular biology and concerns a method for enhancing yield-related traits in plants by modulating expression in a plant of a nucleic acid encoding a SAUR polypeptide. The present invention also concerns plants having modulated expression of a nucleic acid encoding a SAUR polypeptide, which plants have enhanced yield-related traits relative to corresponding wild type plants or other control plants. The invention also provides constructs useful in the methods of the invention. Furthermore, the present invention also relates to a SAUR-based protein complex. It further relates to the use of the complex to enhance yield-related traits, and to a method for stimulating the complex formation, by overexpressing at least two members of the complex. The present invention relates generally to the field of molecular biology and concerns a method for enhancing yield traits in plants by modulating expression in a plant of a nucleic acid encoding a dehydroascorbate reductase (DHAR) polypeptide. The present invention also concerns plants having modulated expression of a nucleic acid encoding a DHAR polypeptide, which plants have enhancing yield traits relative to corresponding wild type plants or other control plants. The invention also provides constructs useful in the methods of the invention.
Owner:BASF PLANT SCI GMBH

Enzyme combination for producing L-phosphinothricin, and production method of L-phosphinothricin

InactiveCN111139270AReduce manufacturing costTake full advantage of catalytic activityOxidoreductasesFermentationPhosphorous acidPhosphite dehydrogenase
The invention discloses an enzyme combination for producing L-phosphinothricin. The enzyme combination comprises glutamate dehydrogenase and a coenzyme regenerating enzyme, wherein the coenzyme regenerating enzyme is alcohol dehydrogenase, formate dehydrogenase and phosphite dehydrogenase. The invention also discloses a production method of L-phosphinothricin, 4-(methylhydroxyphosphinyl)-2-oxobutyric acid is used as a raw material, NH<4><+>, a coenzyme NADP<+>/NADP, and a coenzyme regeneration substrate are added, and then the enzyme combination is used for catalysis, wherein the glutamate dehydrogenase is used to catalyze a reaction of 4-(methylhydroxyphosphinyl)-2-oxobutyric acid to obtain L-phosphinothricin, and the coenzyme regenerating enzyme is used to reduce NADP<+> to NADP. According to the enzyme combination and the production method of L-phosphinothricin provided by the invention, by-products produced are very easy to remove, a post-treatment process of the product is simplified, the total yield of the product is greater than 95%, and the production cost of L-phosphinothricin is reduced, so that the method is a green, environment-friendly, and low-carbon process route, and is suitable for large-scale industrial production applications.
Owner:ZHEJIANG UNIV

Method for simultaneous determination of double items of urea nitrogen and creatinine in serum

InactiveCN105950704AMicrobiological testing/measurementUrea nitrogen/CreatinineGlutaric acid
The invention discloses a method for simultaneous determination of double items of urea nitrogen and creatinine in serum, and belongs to the method for testing a material through testing color changes of reaction results by using visible light; the technical scheme comprises that a reagent II only comprises effective components of creatinine amidohydrolase and creatine amidinohydrolase; a reagent I contains effective components of urease, glutamate dehydrogenase, alpha-ketoglutarate and NADH. The determination method comprises the steps: firstly, carrying out 37 DEG C warm bath of serum with the reagent I for 3-5 minutes; carrying out a reaction of urea in the serum with the reagent I to generate NAD+; adding the reagent II, carrying out 37 DEG C warm bath for 4-7 minutes, hydrolyzing creatinine with the creatinine amidohydrolase to generate creatine; making the creatine generate urea under the action of the creatine amidinohydrolase, and making the urea and the reagent I generate NAD+ under the action of urease; at the wavelength of 340 nm, comparing the reaction speed with that of a standard treated by the same way, determining the change of the first-step reaction NADH, namely the content of urea nitrogen in the serum, and determining the change of the second-step reaction NADH, namely the content of the creatinine in the serum.
Owner:TIANJIN BAODI HOSPITAL
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products