Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

475 results about "Polymer solar cell" patented technology

A polymer solar cell is a type of flexible solar cell made with polymers, large molecules with repeating structural units, that produce electricity from sunlight by the photovoltaic effect. Polymer solar cells include organic solar cells. They are one type of thin film solar cell, others include the more stable amorphous silicon solar cell. Most commercial solar cells are made from a refined, highly purified silicon crystal, similar to the material used in the manufacture of integrated circuits and computer chips. The high cost of these silicon solar cells and their complex production process generated interest in alternative technologies. Compared to silicon-based devices, polymer solar cells are lightweight, potentially disposable and inexpensive to fabricate, flexible, customizable on the molecular level and potentially have smaller negative environmental impact. An example device is shown in Fig. 1. The disadvantages of polymer solar cells are also serious: they offer about 1/3 of the efficiency of hard materials, and experience substantial photochemical degradation.

Polymer solar cell and preparation method thereof

The invention relates to a polymer solar cell, which includes a transparent electrode, a donor material, an active layer material, a receptor material and a metal electrode, wherein a transparent base body which is covered by ITO (Indium Tin Oxide), FTO (Flouride-doped Tin Oxide), ATO (Arsenic Trioxide), graphene, carbon nanotubes or a conjugated polymer thin film is used by the transparent electrode; a nano composite material of conjugated polymer, a metal nanomaterial and a semiconductor quantum point nano material is adopted as the donor material; the active layer material is a nano composite material of conjugated polymer, graphene, carbon nanotubes or fullerene and derivatives thereof in the presence of a modifier; graphene, carbon nanotubes or fullerene and the derivatives thereof are adopted as the receptor material; and the metal electrode is made of silver paste, aluminum paste, silver aluminum paste or metal paste. The donor material, the active layer material, the receptor material and the metal paste are printed on the transparent electrode by using an ink printing machine in sequence, and are subjected to drying treatment at 50-100 DEG C in sequence to obtain the polymer solar cell. The cell has high utilization rate to sunshine, high carrier mobility, high compatibility of donor and receptor, high photoelectric conversion efficiency, simple and convenient preparation process and capability of realizing large-scale industrial application.
Owner:东莞市万能电池实业有限公司

Flexible organic/polymer solar cell and preparation method thereof

The invention provides a flexible organic / polymer solar cell and a preparation method thereof. The flexible organic / polymer solar cell is formed by a flexible substrate, a cathode, a cathode interface layer, an optical active layer, an anode interface layer and an anode sequentially in a stacking mode. The flexible organic / polymer solar cell is characterized in that the flexible substrate is used, the cathode interface layer is arranged between the cathode and the optical active layer, the cathode interface layer is composed of conjugated polymers of polar units containing polar groups or ionic groups or is composed of corresponding polyelectrolyte of the cathode interface layer, and the cathode interface layer is formed by a method of spin coating, brush coating, spray coating, dip coating, roller coating, silk-screen printing, printing or ink-jet printing. According to the flexible organic / polymer solar cell and the preparation method, the performance of the flexible organic / polymer solar cell as well as the stability and the life of a device of the solar cell are greatly improved, a solution processing technology and a low-temperature processing technology are adopted, preparation technologies are simple, the large-area batch production can be achieved, and the manufacturing cost is low.
Owner:SOUTH CHINA UNIV OF TECH

Stacking polymer thin-film solar cell with parallel connection structure

The invention provides a tandem polymer solar cell with a parallel structure. In the solar cell, metals with a high work function such as gold and sliver are taken as a semitransparent anode to extract holes. A p-type metal oxide molybdenum trioxide or tungsten oxide is taken as a hole transport layer at two sides of the anode for connecting an upper sub-cell photosensitive layer and a lower sub-cell photosensitive layer so as to construct a built-in electric field and improve the collection efficiency of a current carrier. The photosensitive layers of an upper sub-cell and a lower sub-cell in the tandem cell are respectively a mixture consisting of a conjugated polymer and a fullerene derivative with different absorption ranges. The two sub-cells are connected in parallel, and short circuit current density of the tandem solar cell is the sum of the short circuit current density of the upper sub-cell and the short circuit current density of the lower sub-cell. By conjugated polymers with the different absorption ranges, the tandem polymer thin film solar cell effectively improves the active sunlight absorption and realizes that the short circuit current is effectively increased to 15 milliampere/square centimeter, thus increasing the maximum energy conversion efficiency of the polymer thin film solar cell to 3.36%.
Owner:CHANGZHOU INST OF ENERGY STORAGE MATERIALS &DEVICES

Large-area polymer solar cell and method for preparing active layer of large-area polymer solar cell

The invention discloses a large-area polymer solar cell and a method for preparing an active layer of the large-area polymer solar cell to solve the technical problems that in the prior art, an active layer prepared through a spin coating process is small in area, can not meet the preparation requirements for a large-area cell module and a series-connection module, and is not suitable for industrial production, and belongs to the technical field of solar cells. The method includes the steps of firstly, dissolving electron donor materials and electron acceptor materials in organic solvents, conducting heating and stirring, and obtaining an evenly-mixed solution; secondly, adding additives to the mixed solution, and obtaining spraying ink of the active layer; thirdly, adding the spraying ink to an ultrasonic spraying instrument, and obtaining the active layer of the polymer solar cell in the spraying process through in-situ atmosphere processing. By means of the method, the active layer of the large-area polymer solar cell can be prepared in the atmosphere environment, and it is ensured that the active layer of the large-area polymer solar cell has high photovoltaic conversion efficiency.
Owner:CHANGCHUN INST OF APPLIED CHEMISTRY - CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products