Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

284results about How to "Crystallize fast" patented technology

Thermoplastic monofilament fibers exhibiting low-shrink, high tenacity, and extremely high modulus levels

Unique thermoplastic monofilament fibers and yarns that exhibit heretofore unattained physical properties are provided. Such fibers are basically manufactured through the extrusion of thermoplastic resins that include a certain class of nucleating agent therein, and are able to be drawn at high ratios with such nucleating agents present that the tenacity and modulus strength are much higher than any other previously produced thermoplastic fibers, particularly those that also simultaneously exhibit extremely low shrinkage rates. Thus, such fibers require the presence of certain compounds that quickly and effectively provide rigidity to the target thermoplastic (for example, polypropylene), particularly after heat-setting. Generally, these compounds include any structure that nucleates polymer crystals within the target thermoplastic after exposure to sufficient heat to melt the initial pelletized polymer and allowing such an oriented polymer to cool. The compounds must nucleate polymer crystals at a higher temperature than the target thermoplastic without the nucleating agent during cooling. In such a manner, the "rigidifying" nucleator compounds provide nucleation sites for thermoplastic crystal growth. The preferred "rigidifying" compounds include dibenzylidene sorbitol based compounds, as well as less preferred compounds, such as [2.2.1]heptane-bicyclodicarboxylic acid, otherwise known as HPN-68, sodium benzoate, certain sodium and lithium phosphate salts [such as sodium 2,2'-methylene-bis-(4,6-di-tert-butylphenyl)phosphate, otherwise known as NA-11]. Specific methods of manufacture of such inventive thermoplastic fibers, as well as fabric articles made therefrom, are also encompassed within this invention.
Owner:MILLIKEN & CO

Non-lauric, non-trans, non-temper fat compositions

A non-lauric, non-trans, non-temper (Non-LTT) fat composition comprising a fraction obtained from a randomised triglyceride mixture in which min. 90% by weight of the constituent fatty acids are: palmitic (C16:0), stearic (C18:0), arachidic (C20:0) behenic (C22:0), oleic (C18:1) and linoleic (C18:2) acid and the total content of arachidic and behenic acid is 3-40% by weight and the total content of palmitic and stearic acids is 25-60% by weight, said fraction having the following physical and chemical properties: (1) slip melting point measured according to AOCS Cc 3-25: below 36° C. and solid fat content (SFC) measured according to IUPAC 2.150 mod. (stabilised at 20° C. for 24 h): above 25% by weight at 20° C.; (2) total content of saturated fatty acids measured according to IUPAC 2.301 and 2.304: 40-75% by weight, preferably 45-70% by weight; (3) total content of arachidic and behenic acids: 3-40% by weight, preferably 5-35% by weight, and total content of palmitic and stearic acids: 25-60% by weight, preferably 25-50% by weight, both measured according to IUPAC 2.301 and 2.304; (4) total content of triglycerides having triglyceride composition (TGC) of C56-C60 measured by number of total carbon atoms of constituent fatty acids according to IUPAC 2.323: min. 9% by weight, preferably min. 15% by weight; (5) total content of S2U-type triglycerides: min. 25% by weight, preferably min. 35% by weight, where S=saturated fatty acids and U=unsaturated fatty acids.
Owner:AAK DENMARK

Preparation method of lodging-resistant multi-difference polyester low-elastic filament

The invention relates to a preparation method of a lodging-resistant multi-difference polyester low elastic filament. The preparation method comprises the following steps: firstly, mixing nano sepiolite fibers, organic magnesium hydroxide whisker, organic barium sulfate nano powder, ethylene glycol, propylene glycol, p-hydroxybenzoic acid and sodium germanate to obtain a high-modulus composite alcohol solution; secondly, mixing organic wollastonite nano needle-like fibers, mica powder, polyethylene glycol, the propylene glycol, an antioxidant 1010, ethylene glycol antimony and protonated agent phosphoric acid to obtain a high-modulus composite promoter; thirdly, co-polycondensing the high-modulus composite multifunctional alcohol solution and the high-modulus composite promoter with purified terephthalic acid and the ethylene glycol to obtain high-modulus modified polyester; a melt of the high-modulus modified polyester is sprayed from a T-shaped spinneret orifice in a spinneret plate; the lodging-resistant multi-difference polyester low elastic filament is prepared by a special cooling mode and a low-temperature texturing process. The fiber prepared by the preparation method has multiple different properties of different crystallization, different orientation and different shrinkage; after different shrinkage, the appearance is good, and a brushed fabric prepared from the lodging-resistant multi-difference polyester low elastic filament is not easy to lodge.
Owner:荣翔化纤有限公司

Polypropylene monofilament and tape fibers exhibiting certain creep-strain characteristics and corresponding crystalline configurations

Unique thermoplastic (polypropylene, specifically) monofilament and / or tape fibers and yarns that exhibit heretofore unattained physical properties are provided. Such fibers are basically manufactured through the extrusion of thermoplastic resins that include a certain class of nucleating agent therein, and are able to be drawn at high ratios with such nucleating agents present, that the tenacity and modulus strength are much higher than other previously produced thermoplastic fibers (particularly those produced under commercial conditions), particularly those that also simultaneously exhibit extremely low shrinkage rates. Thus, such fibers require the presence of certain compounds that quickly and effectively provide rigidity to the target thermoplastic (for example, polypropylene), particularly after heat-setting. Generally, these compounds include any structure that nucleates polymer crystals within the target thermoplastic after exposure to sufficient heat to melt the initial pelletized polymer and allowing such an oriented polymer to cool. The compounds must nucleate polymer crystals at a higher temperature than the target thermoplastic without the nucleating agent during cooling. In such a manner, the “rigidifying” nucleator compounds provide nucleation sites for thermoplastic crystal growth. The preferred “rigidifying” compounds include dibenzylidene sorbitol based compounds, as well as less preferred compounds, such as [2.2.1]heptane-bicyclodicarboxylic acid, otherwise known as HPN-68, sodium benzoate, talc, certain sodium and lithium phosphate salts [such as sodium 2,2′-methylene-bis-(4,6-di-tert-butylphenyl)phosphate, otherwise known as NA-11]. Specific methods of manufacture of such inventive thermoplastic fibers, as well as fabric articles made therefrom, are also encompassed within this invention.
Owner:MILLIKEN & CO

Method for producing high-purity nano-zinc oxide by ammonia method using electrolytic zinc acid-leaching residues

The invention discloses a method for producing high-purity nano-zinc oxide by an ammonia method using electrolytic zinc acid-leaching residues. The method comprises the following steps of: adding slaked lime being 1-5% of the mass of electrolytic zinc acid-leaching residues before a leaching step to perform activation, then leaching with ammonia-ammonium bicarbonate solution, adding 0.3-0.5kg of sodium fluorosilicate to per cubic meter of ammonia-ammonium bicarbonate solution, and refining after performing purification and impurity removal. According to the method for producing high-purity nano-zinc oxide by ammonia method using electrolytic zinc acid-leaching residues, the electrolytic zinc acid-leaching residues can be leached efficiently, the high-purity nano-zinc oxide with the purity up to above 99.7% can be obtained, and the high-purity nano-zinc oxide has high practical value and economic value; all the valuable and harmful heavy metals in the electrolytic zinc acid-leaching residues are leached and utilized, so that the obtained final leaching residues are converted from electrolytic zinc acid-leaching residues as high hazard wastes into ordinary solid wastes, the environment is protected, and the resources are rationally utilized.
Owner:SICHUAN JUHONG TECH

Polypropylene monofilament and tape fibers exhibiting certain creep-strain characteristics and corresponding crystalline configurations

Unique thermoplastic (polypropylene, specifically) monofilament and / or tape fibers and yarns that exhibit heretofore unattained physical properties are provided. Such fibers are basically manufactured through the extrusion of thermoplastic resins that include a certain class of nucleating agent therein, and are able to be drawn at high ratios with such nucleating agents present, that the tenacity and modulus strength are much higher than other previously produced thermoplastic fibers (particularly those produced under commercial conditions), particularly those that also simultaneously exhibit extremely low shrinkage rates. Thus, such fibers require the presence of certain compounds that quickly and effectively provide rigidity to the target thermoplastic (for example, polypropylene), particularly after heat-setting. Generally, these compounds include any structure that nucleates polymer crystals within the target thermoplastic after exposure to sufficient heat to melt the initial pelletized polymer and allowing such an oriented polymer to cool. The compounds must nucleate polymer crystals at a higher temperature than the target thermoplastic without the nucleating agent during cooling. In such a manner, the “rigidifying” nucleator compounds provide nucleation sites for thermoplastic crystal growth. The preferred “rigidifying” compounds include dibenzylidene sorbitol based compounds, as well as less preferred compounds, such as [2.2.1]heptane-bicyclodicarboxylic acid, otherwise known as HPN-68, sodium benzoate, talc, certain sodium and lithium phosphate salts [such as sodium 2,2′-methylene-bis-(4,6-di-tert-butylphenyl)phosphate, otherwise known as NA-11]. Specific methods of manufacture of such inventive thermoplastic fibers, as well as fabric articles made therefrom, are also encompassed within this invention.
Owner:MILLIKEN & CO

Rare earth magnesium-lithium alloy sheet and preparation method thereof

The invention discloses a rare earth magnesium-lithium alloy sheet and a preparation method thereof, belonging to the field of metal processing. The rare earth magnesium-lithium alloy sheet is characterized by comprising the following components in percentage by weight: 11-15% of Li, 0.5-2% of Y, 0.5-2% of Gd, 0.1-1% of Sc, 7-9% of Al and the balance of magnesium. The preparation method comprises the following steps of: melting magnesium and intermediate alloy by using an industrial medium-frequency or line-frequency induction melting furnace, adjusting the furnace temperature for heat preservation treatment, sampling from the furnace and carrying out rapid on-the-spot sample analysis after the heat preservation time is reached, and detecting whether the components are qualified; and hot rolling and cold rolling a pouring and rolling sheet, carrying out T6 treatment, then, making a mechanical sample, and measuring the mechanical property. By using the rare earth magnesium-lithium alloy sheet and the preparation method thereof, the strength of magnesium-lithium alloy is ensured, the plastic deformation capability of the magnesium-lithium alloy is also greatly enhanced, the production difficulty of the deformed magnesium-lithium alloy sheet is lowered, and the production efficiency is increased. The alloy smelting process is simple, convenient and reliable, convenient to operate and free of special processing process and alloy adding methods. A cast ingot is fine and uniform in tissue, free of meshy and thick sheet-like Mg17Al12 phase and uniform in precipitated phase. The rolling process is simple, convenient, reliable and feasible, and the sheet has favorable comprehensive mechanical property.
Owner:INNER MONGOLIA 52 SPECIAL MATERIAL ENG TECH RES CENT

Method for preparing PET (Polyethylene Terephthalate) engineering plastic particle of attapulgite fast crystallization

The invention relates to a method for preparing a PET (Polyethylene Terephthalate) engineering plastic particle of attapulgite fast crystallization. The particle is applied to various industries such as aviation, trains, other traffic and transportation systems and the like. The method comprises the following technical steps of: (1) modifying the surface of attapulgite; (2) adding the modified attapulgite in the step (1) to ethylene glycol, stirring, dispersing, adding terephthalic acid, the modified attapulgite and the ethylene glycol dispersion liquid into an esterification kettle for esterification, adding ethylene glycol antimony as a catalyst, mixing, stirring, introducing the mixture into a polycondensation kettle, reacting and discharging to obtain an attapulgite / PET fast crystallization particle; and adding the attapulgite / PET fast crystallization particle into a twin-screw extruder, simultaneously drying and introducing glass fiber into the twin-screw extruder, cooling with water after extrusion, and granulating. The invention has simple technology and low additive addition quantity, a fast crystallization nucleating agent is evenly distributed over a polyester PET macromolecule by a copolymerization mode, and the product performance is greatly improved.
Owner:JIANGYIN JIHUA NEW MATERIAL

Method for recycling phosphorus from sewage through bioelectrochemical struvite crystallization

The invention discloses a method for recycling phosphorus from sewage through bioelectrochemical struvite crystallization. The method aims to solve the problems that in existing recycling of phosphorus from sewage through bioelectrochemical struvite crystallization, an anode liquid is acidized, the overpotential is large, the magnesium source cost is high, and the like. Cheap magnesium ores are subjected to acidolysis in the anode liquid, acidification of the anode liquid is prevented, the overpotential is remarkably reduced, and the magnesium source cost is lowered. According to the method, based on a bichamber microbial electrolysis pool, under an extremely low externally applied voltage (0.3-1.2 V), an electrode reaction is performed to form conditions for acidification of the anode liquid and acidification of a cathode liquid; the crushed magnesium ores are added to an anode chamber, acidification of the anode liquid is prevented, the pH of the anode liquid is stabilized, and microorganisms are promoted to continuously degrade organic matter to generate power; and magnesium ions released through acidolysis of the magnesian cores move to an cathode through a cation exchange membrane under the drive of the electric filed force and has a crystallization reaction with ammonium radials and phosphate radicals under an alkaline condition, struvite deposits are formed, the pH of the cathode liquid is stabilized, and the purposes of removing and recycling the phosphorus from sewage are realized.
Owner:TONGJI UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products