Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

55results about How to "Inhibition of decomposition reactions" patented technology

Ammonia recovery method of high-ammonia-and-nitrogen waste water

The invention discloses an ammonia recovery method of high-ammonia-and-nitrogen waste water, and belongs to the technical field of sewage treatment. The ammonia recovery method comprises the steps: firstly, the high-ammonia-and-nitrogen waste water passes through a decarburization tower where carbon-dioxide-containing steam and ammonia-containing steam are introduced, and calcium and magnesium ions in the waste water are removed; then the high-ammonia-and-nitrogen waste water passes through a deamination tower, steam-stripping deamination is carried out at 80-90 DEG C, ammonia and nitrogen inthe waste water enter a steam phase, high-concentration ammonia-containing mixed steam is formed and collected at the top of the deamination tower, one part of the ammonia-containing mixed steam flowsback to the decarburization tower, and the remaining part of ammonia-containing mixed steam is introduced into a condenser to be condensed and then subjected to gas-liquid separation; and finally, effluent of the deamination tower enters a subsequent treatment facility to be subjected to biochemical treatment, separated ammonia water enters a carburization tower where the carbon-dioxide-containing steam is introduced, and ammonium bicarbonate is formed and serves as a recycled product. By adopting the method for high-ammonia-and-nitrogen waste water treatment and ammonia recovery, the deamination effect and ammonia recovery efficiency of the high-ammonia-and-nitrogen waste water can be improved greatly, and additionally treatment equipment can further be prevented from being scaled.
Owner:TONGJI UNIV

Graphite particles for lithium ion secondary battery negative electrode materials, lithium ion secondary battery negative electrode and lithium ion secondary battery

Provided are: a negative electrode material which has at least one of excellent initial charge/discharge efficiency, excellent high-rate charge characteristics, excellent high-rate discharge characteristics and excellent long-term cycle characteristics; a negative electrode which uses this negative electrode material; and a lithium secondary battery. Graphite particles for lithium ion secondary battery negative electrode materials, which are a mixture of composite graphite particles (C1) that comprise carbonaceous material (B1) within spheroidized graphite particles (A) having spherical or generally spherical shapes and/or on at least a part of the surfaces of the spheroidized graphite particles (A) and composite graphite particles (C2) that have a graphite material (B2) within the spheroidized graphite particles (A) having spherical or generally spherical shapes and/or on at least a part of the surfaces of the spheroidized graphite particles (A). In this connection, the mixture satisfies the following requirements (1)-(5). (1) The interplanar spacing (d002) of a carbon network surface layer is 0.3360 nm or less. (2) The tap density is 1.0 g/cm<3> or more. (3) The average particle diameter is 5-25 [mu]m. (4) The average aspect ratio is 1.2 or more but less than 4.0. (5) The pore volume of pores having a diameter of 0.5 [mu]m or less as determined by means of a mercury porosimeter is 0.08 ml/g or less.
Owner:JFE CHEMICAL CORP

Lithium-ion secondary battery and anode material and manufacturing method thereof

The invention belongs to the technical field of lithium-ion secondary batteries, and in particular relates to an anode material for a lithium-ion secondary battery. The anode material comprises lithium titanate particles, wherein lithium cobaltate is coated on the surface of the lithium titanate particles and has the chemical formula of LixCo1-yMyO2; and the mass ratio of the lithium cobaltate to the lithium titanate particles is (0.1-10):(90-99.9). Compared with the prior art, the anode material has the advantages that the lithium cobaltate is coated on the surface of the lithium titanate particles, and the content of high-catalytic activity trivalent titanium on the surface of the lithium titanate can be reduced, so that the reaction activity of the surface of the lithium titanate on catalytic decomposition of electrolyte is effectively reduced; meanwhile, a compact coating can react with the electrolyte to form a surface passivation film, a contact interface between the surface of the lithium titanate and the electrolyte is reduced to a certain degree, the reaction between the electrolyte and the lithium titanate is correspondingly reduced; and moreover, the passivation film has high stability at high temperature, so that the battery is prevented from bloating at high temperature.
Owner:NINGDE AMPEREX TECH

Solid capacitor carbon foil nano conductive carbon paste and preparation method thereof

The invention relates to solid capacitor carbon foil nano conductive carbon paste and a preparation method thereof. The solid capacitor carbon foil nano conductive carbon paste comprises a polymer carrier and a nano conductive carbon fiber system dispersed in the polymer carrier, wherein the polymer carrier is formed by mixing an adhesive, a polymer solvent and a processing aid; the nano conductive carbon fiber system comprises a carbon nano tube and an acidified carbon nano tube acidified by a mixed solution of concentrated nitric acid and concentrated sulfuric acid; the adhesive is one or more of polyester acrylic resin, waterborne polyurethane resin, epoxy acrylic resin and polyurethane resin; the polymer solvent is several in butyl cellosolve, polyoxyethylene alkyl phenyl ether, methylbenzyl alcohol, N, N-dimethylformamide and terpilenol. The nano conductive carbon fiber system is dispersed in the polymer carrier, so that the microscopic coverage compactness of a carbon layer is improved; and the solid capacitor carbon foil nano conductive carbon paste is suitable for a solid capacitor carbon foil, protects a current collector, prevents the surface of the aluminum foil from being oxidized or corroded, and greatly reduces the ESR of a solid capacitor.
Owner:南通宇华新材料科技有限公司

Electrolyte solution capable of improving high temperature cycling and storing performances of lithium secondary battery

The invention discloses an electrolyte solution capable of improving high temperature cycling and storing performances of a lithium secondary battery. The electrolyte solution is prepared by lithium salt, an organic solvent and an addition agent, wherein the electrolyte solution also comprises a high temperature film-forming agent; the high temperature film-forming agent is one or any combinations of delta-valerolactone, gamma-valerolactone, gamma-caprolactone and epsilon-caprolactone; and the mass percentage of the high temperature film-forming agent accounts for 0.5%-15% of the total amount of the electrolyte solution. The high temperature film-forming agent is added into the electrolyte solution of the lithium secondary battery, a passivating film with excellent stability can be formed on the surface of a lithium secondary battery positive pole, a contact interface of the positive pole and the electrolyte solution can be improved, the decomposition reaction of the electrolyte solution on the positive pole material in the high temperature is inhibited, and the disadvantages that the existing lithium secondary battery is quick in storage capacity loss, low in recovery rate and quick in battery thickness swelling when being used under high temperature environments are overcome, so that the high temperature cycling and storing performances are improved.
Owner:TIANJIN LISHEN BATTERY

Lithium ion battery electrolyte and preparation method thereof, and lithium ion battery

The invention relates to a lithium ion battery electrolyte, which comprises, by mass, 25-35 parts of a cyclic ester, 30-50 parts of a chain carbonate, 25-35 parts of chain carboxylic acid ester, 12.5-14.5 parts of lithium hexafluorophosphate, 1-2 parts of vinylene carbonate, and 2-4 parts of fluoroethylene carbonate. According to the present invention, with the application of the lithium ion battery electrolyte in the lithium ion battery, vinylene carbonate and fluoroethylene carbonate can form the SEI film with characteristics of high density and stable structure on the electrode material, such that the adsorption of the lithium ions migrating between the positive electrode and the negative electrode on the electrode material surface during the charging and discharging process can be avoided to increase the concentration of the migrating lithium ions so as to improve the number of the charges moving between the positive electrode and the negative electrode within the per unit time of charge and discharge so as to improve the charging and discharging rate of the lithium ion battery. The present invention further discloses a preparation method of the lithium ion battery electrolyte, and a lithium ion battery using the lithium ion battery electrolyte.
Owner:EVE HYPERPOWER BATTERIES INC

Lithium ion battery non-aqueous electrolyte, lithium ion battery and manufacturing method

The present invention discloses a lithium ion battery non-aqueous electrolyte, which comprises an electrolyte lithium salt, a non-aqueous organic solvent and an additive, and according to the mass percentage content in the lithium ion battery non-aqueous electrolyte, the additive comprises a component A, a component B and a component C, and the component A accounts for 0.1-3%; the component B accounts for 10%-80%; the content of the component C is 0.1%-3%; the component B can improve the oxidative decomposition potential of the electrolyte, can form a passivation film on the surface of the negative electrode, and improves the cycle performance of the electrolyte; the component A can effectively inhibit the precipitation of cobalt from the lithium cobalt oxide positive electrode, and the component C can form a sulfur-containing compound on the negative electrode to improve the morphology of the negative electrode passivation film and effectively reduce the impedance of the negative electrode passivation film. The invention provides a lithium ion battery non-aqueous electrolyte which is good in high-temperature cycle characteristic, low in gas production in high-temperature storage and good in low-temperature performance. The invention further provides a lithium ion battery comprising the lithium ion battery non-aqueous electrolyte and a manufacturing method for manufacturing thelithium ion battery.
Owner:CHONGQING VDL ELECTRONICS +1

Polysilicon production technology

The invention provides a polysilicon production technology. The polysilicon production technology comprises mixing refined trichlorosilane and hydrogen according to a ratio to obtain a raw material, orderly treating the raw material through a bubble vaporizer, an inlet and outlet gas heat exchanger and a CVD reduction main furnace, mixing refined trichlorosilane and dichlorosilane according to a ratio to obtain an accessory material, treating the accessory material through a chlorosilane vaporizer to obtain accessory material gas, through the CVD reduction main furnace, producing polysilicon from the raw material gas obtained by the bubble vaporizer, mixing the side product as intermediate tail gas and the accessory material gas through a static mixer, feeding the mixed gas into a CVD reduction accessory furnace, carrying out a reaction process on the intermediate tail gas and the accessory material gas on the surface of a silicon core in the CVD reduction accessory furnace to obtain polysilicon, carrying out heat exchange between the side product as finished tail gas and the raw material gas through the inlet and outlet gas heat exchanger, and feeding the mixed gas into a reduced tail gas recovery system. The polysilicon production technology improves a polysilicon generation rate and a deposition rate and reduces the material total amount of the finished tail gas.
Owner:巴彦淖尔聚光硅业有限公司

Lithium ion battery non-aqueous electrolyte, lithium ion battery and preparation method of lithium ion battery non-aqueous electrolyte

The invention discloses a non-aqueous electrolyte of a lithium ion battery and a manufacturing method of the non-aqueous electrolyte. The electrolyte provided by the invention is good in low-temperature performance, good in high-temperature cycle characteristic and less in gas production in high-temperature storage. Comprising an electrolyte lithium salt, a non-aqueous organic solvent and an additive, according to the mass percentage content in the non-aqueous electrolyte of the lithium ion battery, the additive comprises a component A, a component B and a component C, and the component A accounts for 0.1-3%; the content of the component B is 10%-80%; the content of the component C is 0.1%-3%; the component A can effectively inhibit cobalt element from being separated out of a lithium cobalt oxide positive electrode, and side reaction is reduced; the component B can improve the oxygenolysis potential of the electrolyte, can form a passive film on the surface of the negative electrode, and improves the cycle performance of the electrolyte; and the component C can form a sulfur-containing compound on the negative electrode to improve the morphology of the negative electrode passivation film and effectively reduce the impedance of the negative electrode passivation film.
Owner:CHONGQING ZIJIAN NEW ENERGY CO LTD +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products