Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

30 results about "Titanium sulfide" patented technology

Titanium(II) sulfide (TiS) is an inorganic chemical compound of titanium and sulfur. A meteorite, "Yamato 691", contains tiny flecks of this compound, making it a new mineral called Wassonite.

Method for preparing metallic titanium through vulcanization and electrolysis of titanium and iron composite ore and carbon

The invention provides a method for preparing metallic titanium through vulcanization and electrolysis of titanium and iron composite ore and carbon, and relates to the technical field of extraction of non-ferrous metals. A titanium sulfide anode is adopted for electrolysis, the method has the advantages of high electrolysis efficiency, few intermediate products and capability of directly obtaining the high-purity metallic titanium, continuous production can be realized, production of anode mud can be avoided, and energy minerals can be recycled efficiently. The method comprises the followingsteps that S1, a titanium-containing materiel, a titanium-containing reducing agent and a sulfur-containing reducing agent in the molar ratio ranging from 1:2.0:2.0 to 1:2.5:3.0 are evenly mixed, a mixture is prepared and is subjected to complete vulcanization, and a titanium sulfide product is prepared; S2, a solid solution is prepared from the titanium sulfide product; S3, the metallic titaniumis extracted from molten halide salt of alkali metal or alkaline-earth metal with the electrolysis method, the solid solution is used as the anode during electrolysis, and the metallic titanium is obtained at the cathode. The technical scheme is applicable to the process for preparing the metallic titanium through electrolysis.
Owner:UNIV OF SCI & TECH BEIJING

Hydrogenation catalyst modified by using solid-phase modifier and application of hydrogenation catalyst

The invention discloses a hydrogenation catalyst modified by using a solid-phase modifier and an application of the hydrogenation catalyst. The hydrogenation catalyst is a mixture of a supported palladium catalyst and the solid-phase modifier, or a metal palladium material supported by using the solid-phase modifier as a carrier; when the hydrogenation catalyst is the mixture of the supported palladium catalyst and the solid-phase modifier, the mass ratio of the solid-phase modifier to the supported palladium catalyst is (0.1-500):1; and when the hydrogenation catalyst is the metal palladium material supported by using the solid-phase modifier as the carrier, the loading amount of metal palladium is 0.1-20 wt%, wherein the solid-phase modifier is polyphenylene sulfide or a metal sulfide, and the metal sulfide is at least one selected from the group consisting of silver sulfide, barium sulfide, cadmium sulfide, cerium sulfide, ferrous sulfide, ferrous disulfide, lithium sulfide, sodiumsulfide, nickel sulfide, manganese sulfide, molybdenum sulfide, selenium sulfide, tungsten sulfide, zinc sulfide, copper sulfide and titanium sulfide. The hydrogenation catalyst provided by the invention has high catalytic activity in selective hydrogenation of alkynes, and can effectively improve the catalytic selectivity of a target olefin product.
Owner:ZHEJIANG SUPERIOR TECH CORP LTD

Method for rapidly displaying titaniferous inclusions in field condition based on corrosion principle

InactiveCN102680304AShow accurate and validAvoid confusing field of viewPreparing sample for investigationMaterial analysis by optical meansField conditionsMembrane technology
The invention belongs to the technical field of a method for rapidly displaying titaniferous inclusions in the field condition based on a corrosion principle, in particular relates to the technical field of metallographic sample preparation of the field metallographic displaying method of titanium nitride and titanium sulfide inclusions in steels, and the like. The method includes the steps of preparing metallographic samples and grinding the samples with 2000 # abrasive paper; corroding surfaces of the ground samples with special chemical reagent, wherein effects of polishing and appearance displaying of titaniferous inclusions can be achieved simultaneously; and performing observation with a field metallographic microscope or sampling analysis by using the membrane coating technology. According to the method, shapes of the titanium nitride and titanium sulfide inclusions can be highlighted, thus, matrix should be prevented from presenting metallographic structures to confuse the field of view, further, field metallographic sample preparation difficulties can be simplified, and sample preparation efficiency can be improved. Besides, titaniferous inclusions in steels can be displayed accurately and efficiently, and the method has the advantages that sample preparation is convenient, displaying effect is good, generality is high and the like.
Owner:NORTHEAST POWER SCI RES INSTITUTION +2

Preparation method, product and application of oxygen-deficient titanium disulfide and carbon nano-disc photocatalytic material

The invention provides a preparation method of an oxygen-deficient titanium disulfide and carbon nano-disc photocatalytic material, and the method comprises the following steps: adding organic titanium salt into oleylamine, stirring, introducing inert gas, and performing heating to sufficiently mix the solution; injecting mercaptan into the solution, performing stirring and heating, keeping the temperature for 20-30 minutes, and performing natural cooling to room temperature; dropwise adding the obtained solution into liquid alkane, and separating and drying precipitates to obtain a titanium disulfide@C nano disc; placing the pure titanium disulfide@C nanodisk in a hydrogen atmosphere, and performing calcining to obtain the oxygen-deficient titanium disulfide@C nanodisk. According to the preparation method of the oxygen-deficient titanium disulfide and carbon nano-disc photocatalytic material, the titanium disulfide and carbon nano-disc photocatalytic material has a large specific surface area, and the oxygen-deficient defects play an important role in improving the photocatalytic performance of the material. The photocatalytic performance of the material is favorably improved. Under the condition of ultraviolet light catalysis, after 60 min, the degradation rate of tetracycline reaches 99.8%. The preparation process is relatively simple and easy to operate.
Owner:SHANGHAI NAT ENG RES CENT FORNANOTECH

Titanium monosulfide particles and composite material thereof, preparation, application and coating material thereof

PendingCN114477272AIrregular dispersionImprove the lubrication effectTitanium sulfidesMolten spray coatingTitanium monosulfideTitanium sulfide
The invention belongs to the technical field of solid lubricating materials, and particularly relates to titanium monosulfide particles, a composite material of the titanium monosulfide particles, preparation and application of the titanium monosulfide particles and a coating material. The titanium monosulfide particles are of a layered structure formed by stacking two-dimensional nanosheets. The invention discloses a novel TiS particle, and experimental results prove that the titanium monosulfide used as a high-temperature-resistant coating has the following unexpected excellent properties: the friction coefficient is in a decreasing trend along with the increase of the temperature (which is obviously different from the trend of the traditional material, the increase of the temperature and the decrease of the friction coefficient); and the lowest friction coefficient of 0.08 is realized at the temperature of 1000 DEG C. The invention further discloses the ZrO2 (at) TiS composite material. Compared with pure titanium monosulfide, the lubricating property of the ZrO2-coated TiS composite material coating is relatively reduced, but the reduction of the preparation cost provides guarantee for the effects of the ZrO2-coated TiS nano composite material in different fields.
Owner:CHONGQING UNIV

A preparation method of vanadium-doped titanium carbon sulfide battery negative electrode material and its obtained material and application

The invention discloses a preparation method of a vanadium-doped carbon sulfide titanium battery negative electrode material. The preparation method of the vanadium-doped carbon sulfide titanium battery negative electrode material comprises the following steps: (1) weighing vanadium powder, titanium powder, sulfur powder and carbon powder, and ball-milling to obtain initial raw materials; (2) performing high-temperature self-propagating reaction on the initial raw materials to prepare a solid block-shaped sample; (3) performing ball-milling treatment on the solid block-shaped sample to obtaina powdered small-granule sample; and (4) performing ultrasonic treatment, centrifugation and drying on the powdered small-granule sample to obtain the vanadium-doped carbon sulfide titanium battery negative electrode material. The invention also discloses the vanadium-doped carbon sulfide titanium battery negative electrode material prepared by the preparation method as well as application of thevanadium-doped carbon sulfide titanium battery negative electrode material to preparation of a lithium ion battery. Compared with the prior art, the preparation process is simple, rapid and pollution-free, and the vanadium-doped carbon sulfide titanium battery negative electrode material prepared by the method has high specific capacity, has high conductivity, electrochemical activity and cyclingstability and is particularly suitable for manufacturing the lithium ion battery negative electrode.
Owner:YANCHENG INST OF TECH

A kind of hydrogenation catalyst modified by solid phase modifier and its application

The invention discloses a hydrogenation catalyst modified by a solid-phase modifier and its application. The hydrogenation catalyst is a mixture of a supported palladium catalyst and a solid-phase modifier, or is supported by a solid-phase modifier. metal palladium material; when the hydrogenation catalyst is a mixture of a supported palladium catalyst and a solid phase modifier, the mass ratio of the solid phase modifier to the loaded palladium catalyst is 0.1 to 500:1; when the hydrogenation catalyst is a mixture of When the solid-phase modifier is a metal palladium material loaded on a carrier, the loading amount of metal palladium is 0.1-20wt%; the solid-phase modifier is polyphenylene sulfide or metal sulfide, and the metal sulfide is silver sulfide, barium sulfide, At least one of cadmium sulfide, cerium sulfide, ferrous sulfide, ferrous disulfide, lithium sulfide, sodium sulfide, nickel sulfide, manganese sulfide, molybdenum sulfide, selenium sulfide, tungsten sulfide, zinc sulfide, copper sulfide, titanium sulfide. The hydrogenation catalyst of the present invention has high catalytic activity in the selective hydrogenation reaction of alkynes, and can effectively improve the catalytic selectivity of target olefin products.
Owner:ZHEJIANG SUPERIOR TECH CORP LTD

Preparation method, product and application of an oxygen-deficient titanium disulfide@carbon nanodisk photocatalytic material

The invention provides a preparation method of an oxygen-deficient titanium disulfide@carbon nanodisk photocatalytic material. The organic titanium salt is added to oleylamine and stirred, an inert gas is introduced, and the solution is heated to be fully mixed; and mercaptan is injected into the above solution, Stir and heat, keep at this temperature for 20-30 min, and naturally cool to room temperature; drop the obtained solution into liquid alkane, and separate and dry the precipitate to obtain titanium disulfide@C nanodiscs; pure titanium disulfide@C nanodiscs The disks were placed in a hydrogen atmosphere and calcined to obtain oxygen-deficient titanium disulfide@C nanodisks. The invention provides a preparation method of an oxygen-deficient titanium disulfide@carbon nano-disk photocatalytic material. The titanium disulfide@carbon nano-disk photocatalytic material has a larger specific surface area, and the oxygen-deficient defect plays an important role in improving the photocatalytic performance of the material. plays a very important role. It is beneficial to improve the photocatalytic performance of the material. Under UV photocatalytic conditions, the degradation of tetracycline reached 99.8% after 60 min. The preparation process is relatively simple and easy to operate.
Owner:SHANGHAI NAT ENG RES CENT FORNANOTECH

A kind of ilmenite composite ore carbon vulcanization-electrolytic method for preparing titanium metal

The invention provides a method for preparing titanium metal by ilmenite composite ore carbon sulfide-electrolysis, which relates to the technical field of non-ferrous metal extraction. It adopts titanium sulfide anode for electrolysis, and has the advantages of high electrolysis efficiency, less intermediate products, and high-purity titanium directly. Advantages, it can also be produced continuously without producing anode slime, and realizes efficient recycling of energy minerals; the method steps include S1, mixing titanium-containing materials, carbon-containing reducing agents, and sulfur-containing reducing agents in a molar ratio of 1:2.0:2.0 ~1:2.5:3.0 ratio is uniformly mixed to make a mixture, and the mixture is completely vulcanized to prepare a titanium sulfide product; S2, prepare the titanium sulfide product into a solid solution; S3, in a molten salt electrolyte system Metal titanium is extracted by electrolysis, the anode is the solid solution during electrolysis, the anode recovers sulfur gas, and the cathode obtains metal titanium. The technical scheme provided by the invention is suitable for the processes of sulfidation of titanium-containing ores and electrochemical extraction of metallic titanium.
Owner:UNIV OF SCI & TECH BEIJING

Preparation method of surface-modified titanium sulfide battery negative electrode material

The invention provides a preparation method of a surface-modified carbon sulfide titanium battery negative electrode material. The preparation method comprises mixing titanium powder, sulfur powder and graphite powder according to a mole ratio of (1.4-2.2): (0.8-1.2): (0.8-1.2), adding the mixed powder into a self-propagating synthesis reaction kettle, carrying out a high temperature self-propagating reaction process, carrying out ball milling treatment on the obtained blocky sample to obtain a powdery small-particle sample, adding the powdery small-particle sample into absolute ethyl alcohol,carrying out solvent ultrasonic treatment, centrifuging, drying to obtain titanium sulfide powder, mixing the titanium sulfide powder and sodium borohydride in a weight ratio of 1: 4 in an argon atmosphere, heating, and cooling to room temperature to obtain the titanium sulfide/sodium borohydride composite material. The method disclosed by the invention is simple to operate, low in energy consumption, low in cost and environment-friendly, and the prepared surface-modified titanium sulfide negative electrode material is high in specific capacity, has good conductivity, electrochemical activity, cycling stability and rate capability, and is suitable for a negative electrode of a lithium ion battery.
Owner:YANCHENG INST OF TECH

Low-valence titanium sulfide as well as preparation method and application thereof

The invention discloses a low-valence titanium sulfide, a preparation method and an application thereof. The method comprises the steps that 1, a TiS2 cathode is prepared, specifically, TiS2 powder issubjected to compression molding to be in a sheet shape, the sheet-shaped TiS2 is fixed to a current collector, and therefore the TiS2 cathode is obtained; (2) a fused salt electrolyte is prepared: under the protection of inert gas, firstly water of haloid is removed, and then heating is carried out to completely melt the haloid so as to obtain the fused salt electrolyte; (3) low-valence titaniumsulfide is prepared: an inert anode and the TiS2 cathode prepared in the step (1) are put into the molten salt electrolyte prepared in the step (2), and an electrolytic tank is constructed; and the TiS2 on the TiS2 cathode is electrolyzed by controlling the electrolysis voltage and the electrolysis time, so that the low-valence titanium sulfide is obtained. According to the method, TiS2 is used as a raw material for preparing the TiS2 cathode, haloid is used for preparing the fused salt electrolyte, and the low-valence titanium sulfide with high conductivity is obtained by controlling the electrolysis voltage and the electrolysis time.
Owner:HUAZHONG UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products