Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

74results about How to "Enhanced electron transfer capability" patented technology

Gold-doped carbon nitride composite material, preparation method thereof and methyl mercury detection method

ActiveCN110389162AAvoid pollutionImprove electron transfer ability and catalytic activityPhysical/chemical process catalystsMaterial electrochemical variablesIonUrea
The invention discloses a gold-doped carbon nitride composite material, a preparation method thereof and a methyl mercury detection method. The preparation method comprises the following steps: calcining a preparation raw material at high temperature to obtain a carbon nitride material, wherein the preparation raw material is one or more of cyanuric acid, melamine, ethylenediamine, graphite-phasecarbon nitride, dicyandiamide, urea and cyanamide; dissolving the carbon nitride material in deionized water, and carrying out ultrasonic oscillation, so that the carbon nitride material is stripped into a lamellar structure from a blocky structure to form g-C3N4 nanosheet turbid liquid; carrying out centrifugal separation on the g-C3N4 nanosheet turbid liquid, and taking out supernate after layering; adding a chloroauric acid solution into the supernate to form a mixed solution; stirring the mixed solution, and irradiating the mixed solution with ultraviolet rays to synthesize Au/g-C3N4 nanocomposite. According to the preparation method, the nanocomposite is prevented from being polluted, so that the electron transfer capability and the catalytic activity of the prepared gold-doped carbonnitride nanosheet composite material are improved.
Owner:HEFEI UNIV OF TECH

Nickel-nitrogen co-doped porous carbon material loaded with cobalt nanoparticles, and preparation method and application thereof

The invention discloses a nickel-nitrogen co-doped porous carbon material loaded with cobalt nanoparticles, and a preparation method and application thereof, and relates to a preparation method of a porous carbon material. The invention aims to solve the problems that conventional methods for preparing porous carbon are tedious in operation steps, time-consuming, high in overpotential, high in equipment requirements and harmful to the environment, limit the preparation of the porous carbon material, are not suitable for large-scale production and cannot meet the new application requirements inthe fields of energy, catalysis, biology and the like. The nickel-nitrogen co-doped porous carbon material loaded with cobalt nanoparticles grows on foamed nickel in situ. The preparation method comprises the following steps: 1, pretreating the foamed nickel; 2, growing a cobalt-based zeolite imidazate framework structure material nanosheet array on the foamed nickel in situ; and 3, carrying outcalcining. The c nickel-nitrogen co-doped porous carbon material loaded with cobalt nanoparticles is used as a catalyst for hydrogen production through water electrolysis in the field of energy. The nickel-nitrogen co-doped porous carbon material loaded with cobalt nanoparticles can be obtained by using the method.
Owner:哈尔滨凯美斯科技有限公司

Silicon nano-wire-polypyrrole composite material preparation method

The invention discloses a silicon nano-wire-polypyrrole composite material preparation method, which comprises: carrying out metal assisted chemical etching on a single crystal silicon wafer by usingsilver nitrate and hydrofluoric acid to form silicon nano-wires positioned on the single crystal silicon wafer and perpendicular to the surface, coating the surface of the single crystal silicon waferwith the mixed solution of dodecyl benzenesulfonic acid and ammonium persulfate in a spin-coated manner, placing into a closed polymerization device, suspending the wafer above a pyrrole monomer solution, pumping to form a negative pressure, and polymerizing to obtain the silicon nano-wire-polypyrrole composite material. According to the present invention, the preparation method overcomes the disadvantages of the traditional liquid phase chemical polymerization method and the electrochemical preparation method, and has characteristics of simpleness, low cost and low power consumption; the synthesized polypyrrole film is dense and uniform; and the polypyrrole surface modified one-dimensional silicon-based gas sensitive material constructed by the method has high room temperature sensitivity and fast response recovery performance to specific gases.
Owner:TIANJIN UNIV

Lanthanum-doped copper-manganese composite oxide catalyst and preparation method thereof

The invention discloses a lanthanum-doped copper-manganese composite oxide catalyst and a preparation method thereof. In the XRD diffraction spectrum of the catalyst, a diffraction peak of Cu1.5Mn1.5O4 spinel phase is contained, and no diffraction peaks of La and Mn2O3 are contained; in the XPS Cu 2p spectrum of the catalyst, two peaks at 933.3+/-0.1 eV and 930.5+/-0.1 eV are contained. More reactive oxygen and more active oxygen transport channels are resulted from existence of Cu1.5Mn1.5O4 and weak crystallization of MnOx, and the catalytic performance of the copper-manganese composite oxidecatalyst for VOCs can be improved further through La. The preparation method comprises the following steps: (1) dissolving a manganese salt, a copper salt and a lanthanum salt in water, carrying outwater bath for 0.1-1 h with a water bath temperature at 50-70 DEG C; (2) adding an ammonium salt solution to a pH value of 7.5-8.5, and keeping stirring for 1-3 hours; and (3) taking the precipitate,and then performing drying and sintering so as to obtain the lanthanum-doped copper-manganese composite oxide catalyst. The preparation method of the lanthanum-doped copper-manganese composite oxide catalyst has a simple process, easy control and volume production.
Owner:SICHUAN UNIV

Preparation method of polymer conversion ceramic-based wave-absorbing material loaded with nitrogen-doped graphene in situ

ActiveCN113735597AEnhanced dielectric loss capabilityIncrease productionDoped grapheneComposite ceramic
The invention relates to a preparation method of a polymer conversion ceramic-based wave-absorbing material loaded with nitrogen-doped graphene in situ. An organic nitrogen source reacts with a silicon-based polymer to generate a single-source precursor, and cracking and high-temperature heat treatment are carried out to enable the precursor to be self-assembled to generate the material. The single-source precursor is synthesized in one step through an organic chemical modification method, and the nitrogen-doped graphene-loaded polymer converted ceramic (NG-PDCs)-based composite material with excellent wave-absorbing performance is obtained through high-temperature cracking. The nitrogen-doped graphene loaded composite ceramic is converted from a synthesized single-source precursor, wherein nitrogen-doped graphene is uniformly distributed in polymer conversion ceramic. The NG with more excellent wave-absorbing performance is introduced in one step through chemical combination, so that the defects that preparation is tedious and the structure is prone to agglomeration due to the fact that graphene is added in a traditional method are overcome, and the wave-absorbing performance of the PDCs material is improved.
Owner:NORTHWESTERN POLYTECHNICAL UNIV

Nitrogen-doped carbon-loaded palladium catalyst as well as preparation method and application thereof

The invention provides a nitrogen-doped carbon-loaded palladium catalyst as well as a preparation method and application thereof, and belongs to the technical field of catalysts. The preparation method of the nitrogen-doped carbon-loaded palladium catalyst comprises the following steps: mixing a carbon material and a strong acid solution, and carrying out acid treatment to obtain an acid-activated carbon material; mixing the acid activated carbon material, a water-soluble palladium salt solution and a nitrogen-containing ionic liquid, and drying the material to obtain a catalyst precursor; and calcining the catalyst precursor in a protective atmosphere, and reducing to obtain the nitrogen-doped carbon-loaded palladium catalyst. In the method, the acid treatment can increase the number of oxygen-containing functional groups on the surface of the carbon material and improve the dispersion stability of palladium nanoparticles; secondly, the nitrogen-containing ionic liquid is used as a precursor of nitrogen, nitrogen atoms generated by decomposition in the calcining process are doped, so that nitrogen can be uniformly doped in the carbon material, meanwhile, the dispersity and the stability of palladium nanoparticles are improved, and the catalytic activity is high. The preparation method is simple in process and suitable for industrial production.
Owner:TAIZHOU UNIV +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products