Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

120 results about "Pre deposition" patented technology

A pre-arraignment deposition is the testimony that is presented at the pre-arraignment meeting that is held prior to a defendant's first appearance in court. A pre-arraignment meeting is where this deposition is delivered. The meeting is usually arranged by the Criminal Division Staff.

Spread method of polycrystalline silicon solar cell

The invention relates to a spread method of a polycrystalline silicon solar cell. The spread method is characterized in that the spread method comprises the following processing steps of entering a boat, warming, oxidizing, spreading, redistributing, cooling and going out the boat, wherein the spreading step comprises low temperature pre-deposition and then high temperature spreading. Reaction between a phosphorus source and a silicon wafer cannot be completed under low temperature, so that the low temperature pre-deposition is carried out on low temperature source communication at a first step of spreading, the phosphorus source cannot spread (or conduct spreading with low rate) inside a silicon wafer, the phosphorus source only accumulates on the surface of the silicon wafer, and a phosphorus film with certain thickness is formed on the surface of the silicon wafer after source communication for certain time; and the high temperature spreading is carried out on high temperature source communication at a second step, phosphorus on the surface of an original silicon wafer is reacted with the silicon wafer and spreads to the inside of the silicon wafer, and spreading rates of the center point and the periphery of the silicon wafer are same. Therefore, spreading uniformity is good, concentration distribution of impurities on the surface of the silicon wafer and inside the silicon wafer body is even, sheet resistance uniformity is improved, and final photoelectric conversion efficiency of a cell sheet is improved accordingly.
Owner:JIANGYIN XINHUI SOLAR ENERGY

Fast recovery diode FRD chip and production process for same

The invention relates to a fast recovery diode FRD chip and a production process for the same. The process comprises the following steps of: diffusion pre-treatment, boron source pre-deposition, boron source main diffusion, diffusion after-treatment, single-surface back grinding thinning, oxidation pre-treatment, oxidation, photoetching, single-surface oxide layer removal, phosphorus source pre-deposition, phosphorus diffusion, sand blasting, platinum diffusion, N + surface mesa etching, electrophoresis, sintering, oxide layer removal, nickel plating, gold plating and chip cutting, wherein the structure of the obtained chip is P+-N-N+ type. According to the process, the uniformity of the reverse recovery time of the fast recovery diode is improved and controllability is improved, meanwhile, voltage drop is reduced, leakage current is reduced, and voltage-proof stability is improved; the contradiction of mutual condition among the reverse voltage, the positive voltage, the reverse recovery time and the leakage current of the fast recovery diode is solved to enable the various parameters to achieve the optimal matching, thus improving the reliability and switching characteristic of the diode, and reducing power consumption. The fast recovery diode disclosed by the invention breaks through the technical bottleneck of the traditional fast recovery diodes.
Owner:SUZHOU QILAN POWER ELECTRONICS

Preparation method of phenol-formaldehyde resin-based carbon molecular sieve for adsorbing and separating methane and nitrogen gas

The invention discloses a preparation method of a phenol-formaldehyde resin-based carbon molecular sieve for adsorbing and separating methane and nitrogen gas. The preparation method mainly includes the following steps: (1) mixing phenol-formaldehyde resin waste, coal tar, water and a pore-forming agent in a certain proportion evenly, carrying out strip extrusion moulding and drying at low temperature; (2) carbonizing at high temperature under the protection of nitrogen gas to prepare a pre-deposition matrix with suitable pore size; and (3) directly introducing a methane depositing agent and depositing without cooling of the matrix, and adjusting the pore size of the matrix to prepare the carbon molecular sieve sample. The raw materials have low cost, carbonization and deposition are integrated in the preparation process, the energy loss is reduced, more energy is saved, the influence of heat on the pore size change of the matrix during carbonization cooling and deposition heating is reduced, and the pore size is relatively stable; the pore size of the matrix prepared by the method is small, the deposition time is reduced, and the sample after deposition has the adsorption capacityof nitrogen gas of 6.5-7.5 ml/g and the adsorption capacity of methane of 7-10 ml/g at 25 DEG C/1 atmospheric pressure.
Owner:ZHENGZHOU MINERALS COMPOSITIVE UTILIZATION RES INST CHINESE GEOLOGICAL ACAD

Manufacturing method of reverse-conducting integrated gate-commutated thyristor

ActiveCN102969245AIncrease the punch-through voltageDoes not affect vertical structureThyristorSemiconductor/solid-state device manufacturingImpurity dopingIntegrated gate-commutated thyristor
The invention discloses a manufacturing method of a reverse-conducting integrated gate-commutated thyristor. The method comprises the following steps: S100: lightly doping one side of an original N- substrate with a layer of N' impurity; S101, fabricating a P-type base region of a GCT (Gate Commuted Tryristor) and a P-type base region of an FRD (Fast Recovery Diode); S102, performing N' impurity doping on the other side of the N- substrate; S103, performing pre-deposition on a GCT cathode and an FRD cathode; S104, etching isolation trenches on the upper surface of an isolation region and a gate region of the GCT; S105, performing N+ propelling and passivation on the GCT cathode and the FRD cathode; S106, performing P+ doping on a GCT anode; and S107, fabricating electrodes. According to the invention, using the compensating effect of the impurity, under the condition that the P-type doping distribution of the isolation region is not changed, the effective width of the isolation region is increased, and the shortcomings existing in the prior art that the diffusion control precision is not high, and the process is complicated and not suitable for high pressure devices are overcome.
Owner:ZHUZHOU CRRC TIMES SEMICON CO LTD

Quick diffusion annealing method

The invention discloses a quick diffusion annealing method. A primary source introduction and pre-deposition process is carried out at below 800 DEG C. After deposition, aerobic heating advance is carried out, and the temperature can rise up to 840-880 DEG C. A PN node advanced at the moment is deep. Then, an aerobic cooling process is carried out, and the temperature drops to 810-850 DEG C. Secondary source introduction is carried out, which is a key step for quick annealing. After that, the furnace door is half-opened immediately, a large amount of nitrogen is introduced, and quick cooling and annealing are carried out. The lattice is repaired to a certain degree, but the phosphorus source still needs certain advance time. Thus, the furnace door is closed slowly, and the temperature goes back to a constant state. The beneficial effects of the method are as follows: through secondary source introduction, the surface concentration is increased, and the filling factor is improved; through lattice repair, thermal damage is reduced, the open-circuit voltage and short-circuit current are improved, and the conversion efficiency of cells is improved; and through quick cooling, the total process time is reduced, the process efficiency is improved, and the production capacity is increased.
Owner:HENGDIAN GRP DMEGC MAGNETICS CO LTD

Preparation method for improving performance of industrial silicon thin-film cell component

The invention relates to a preparation method for improving the performance of an industrial silicon thin-film cell component and belongs to the technical field of the production of thin-film solar cells, and the problem of pollution of industrial silicon thin-film cells is solved by adopting pre-deposited amorphous silicon thin films. The technical scheme adopted by the invention is as follows: an amorphous silicon thin film pre-deposition process is introduced into a plasma cleaning/deposition process of a silicon thin-film cell preparation method, a plasma enhanced chemical vapor deposition process is adopted after a reaction chamber is etched and cleaned through fluorine plasma, the glow power and silane concentration are controlled, the amorphous silicon thin film is pre-deposited, and the concentration of fluorine, sulfur or oxygen remained in the reaction chamber is lowered, thus the photoelectric conversion efficiency of the industrial silicon thin-film cell component is increased. The preparation method for improving the performance of the industrial silicon thin-film cell component has the advantages that equipment has no need of being stopped, the transplanting efficiency of a system is not affected, the pollution is reduced, and meanwhile, the efficiency of a cell is effectively increased.
Owner:河北京碳能源有限公司

Method for depositing amorphous silicon membrane through PECVD (plasma enhanced chemical vapor deposition)

The invention discloses a method for depositing an amorphous silicon film by PECVD, which also includes a pretreatment step before the step of depositing the amorphous silicon film; the pretreatment step includes depositing a layer of intermediate The pre-deposition step of the dielectric layer; the adhesion and stress buffering capacity of the intermediate dielectric layer and the inner wall of the process chamber are greater than the adhesion and stress buffering capacity of the amorphous silicon film and the inner wall of the process chamber, and the intermediate dielectric layer and the amorphous silicon The adhesion and stress buffering capacity of the film are greater than the adhesion and stress buffering capacity of the amorphous silicon film and the inner wall of the process chamber, and the intermediate dielectric layer is used as a buffer layer between the inner wall of the process chamber and the amorphous silicon film on the inner wall and Prevent the amorphous silicon film on the inner wall of the process chamber from peeling off. The invention can reduce the generation of particles, improve the quality of the amorphous silicon film and improve the product yield.
Owner:SHANGHAI HUAHONG GRACE SEMICON MFG CORP

4N tellurium preparation method based on alkaline electro-deposition process

ActiveCN107475736AImprove compactnessHigh deposition current densityElectrolysis componentsElectrolysisTe element
The invention discloses a 4N tellurium preparation method based on an alkaline electro-deposition process. The method includes the following steps that a sodium hydroxide piece is added into ultrapure water at an indoor temperature, stirring and dissolving are conducted, and hot alkaline liquor is obtained; crude tellurium dioxide powder is added into the hot alkaline liquor for reacting, and electrolysis ex-liquid is obtained through preparation; a purifying agent is added so that the electrolysis ex-liquid can be purified and filtered, and an electrolyte is obtained through preparation; the electrolyte is cooled to the indoor temperature, an addition agent is added, the electrolyte is subjected to constant voltage pre-deposition treatment after stirring and dissolving are completed, and then constant current electro-deposition treatment is conducted so that electro-deposition product tellurium blocks and electrolysis post-liquid can be obtained; and after the tellurium blocks are stripped from a plate electrode, washing with the ultrapure water is performed for several times, and then drying is conducted so that 4N tellurium can be prepared. The preparation method disclosed by the invention has the advantages that the deposition electric current density is large, deposition efficiency is high, the preparation period is short, the tellurium product compactness is good, the electrolyte can be recycled, cost is low, the environment is friendly and industrialization is can be facilitated; and the 4N tellurium preparation method can be effectively applied to alkaline electro-deposition for preparing the 4N tellurium.
Owner:SICHUAN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products