Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

324 results about "Biocomposite" patented technology

A biocomposite is a composite material formed by a matrix (resin) and a reinforcement of natural fibers. These kind of materials often mimic the structure of the living materials involved in the process keeping the strengthening properties of the matrix that was used, but always providing biocompatibility. The matrix phase is formed by polymers derived from renewable and nonrenewable resources. The matrix is important to protect the fibers from environmental degradation and mechanical damage, to hold the fibers together and to transfer the loads on it. In addition, biofibers are the principal components of biocomposites, which are derived from biological origins, for example fibers from crops (cotton, flax or hemp), recycled wood, waste paper, crop processing byproducts or regenerated cellulose fiber (viscose/rayon). The interest in biocomposites is rapidly growing in terms of industrial applications (automobiles, railway coach, aerospace, military applications, construction, and packaging) and fundamental research, due to its great benefits (renewable, cheap, recyclable, and biodegradable). Biocomposites can be used alone, or as a complement to standard materials, such as carbon fiber. Advocates of biocomposites state that use of these materials improve health and safety in their production, are lighter in weight, have a visual appeal similar to that of wood, and are environmentally superior.

Nanofibrous biocomposite prosthetic vascular graft

The present invention provides a bioactive, small-diameter (typically less than 6 mm in internal diameter) vascular graft prosthesis, and is a textile conduit preferably manufactured using a novel electrospinning perfusion methodology. One preferred embodiment is a nanofibrous biocomposite textile conduit which comprises a prepared liquid admixture of polyester (Dacron), a biodurable implantable synthetic polymer, and Type IV collagen, an extracellular matrix protein. This prepared admixture and blending of diverse fibrous matter is utilized in a novel electrospinning perfusion process to form a small-diameter (less than 6 mm) fabricated textile conduit, a discrete article of manufacture, which then serves as an antecedent tangible workpiece for a subsequently-made prosthetic vascular graft construct. In this manner, after the biocomposite textile conduit has been fabricated as a tangible article, one or more pre-chosen biologically-active compounds are then subsequently permanently bound (covalently or ionically) via a bifunctional linking agent to the wall surface(s) of the textile conduit. These permanently bound compounds retain their characteristic biological activity after becoming permanently immobilized to the textile wall surface; and, via such immobilization, provide the textile conduit wall with many of the highly desired attributes and properties characteristic of naturally occurring blood vessels. Accordingly, after the immobilization of one or more biologically active compounds to the wall surfaces, the completely prepared article is then suitable for use in-vivo as a prosthetic vascular graft construct.
Owner:BIOSURFACES +2

Material increase manufacturing method of multi-scale biomimetic artificial bone support

ActiveCN104826171AReduce the cost of clinical applicationMeet lifelong growth requirementsProsthesisPorosityAutologous tissue
The invention discloses a material increase manufacturing method of a multi-scale biomimetic artificial bone support. The material increase manufacturing method comprises blending a biopolymer material and a bioceramic material, blending the mixture and deionized water or an organic solvent to obtain uniform slurry, carrying out freeze drying to obtain uniform powder, blending the uniform powder and deionized water or an organic solvent, carrying out vacuum exhaust, carrying out quantitative extrusion by a screw pump, by a XYZ motion device, designing internal aperture shapes, sizes and porosity of a geometric model by computer program according to a bone defect 3D geometric model obtained by CT scanning, and carrying out material increase manufacture under control of an extruded material motion locus. Through use of a degradable biological compound material, human autologous tissue finally replaces bone defect positions so that human lifelong growth requirements are satisfied. The needed biomaterial is quantificationally extruded by the screw pump so that use amount can be accurately controlled and an artificial bone clinical application cost is substantially reduced. The material increase manufacturing method has the advantages of accurate printing material use amount, wide material application range, accurate and controllable aperture structure, and free formation of a macroscopic geometric shape.
Owner:西安点云生物科技有限公司

Hydroxyapatite activated titanium alloy surface-layer biological composite material and preparation method thereof

The invention discloses a hydroxyapatite activated titanium alloy surface-layer biological composite material and its preparation method and belongs to the field of biomedical material preparation. The surface-layer biological composite material is characterized in that titanium alloy is used as a matrix, and hydroxyapatite + titanium is a biological active layer. Technological steps are as follows: respectively carrying out mechanical alloying, ball-milling, powder-blending and drying on the titanium alloy matrix powder and the biological active layer powder, respectively placing the dried matrix mixed powder and the dried biological active layer mixed powder to a lower layer and an upper layer of a graphite mould (as shown in the specification), sintering in a spark plasma sintering furnace, and cooling to room temperature to obtain the surface-layer biological composite material. During the sintering process, axial pressure is 30-40 MPa, sintering temperature is 1100-1250 DEG C, and thermal insulation lasts for 10-15 min. In the prepared surface-layer composite material, the composite layer and the matrix are chemically and metallurgically bonded. The interface bonding strength is high, and the problem that a biological ceramic coating is easy to fall off can be solved. The preparation process is clean. The technology is simple and low-cost, and is easy to realize industrial production.
Owner:KUNMING UNIV OF SCI & TECH

Preparation method of novel neural restoration tissue engineering scaffold

The invention relates to the technical field of biological composite materials, and discloses a preparation method of a novel neural restoration tissue engineering scaffold. The preparation method comprises the following steps: modifying bacterial cellulose; preparing a living cell derived material; uniformly mixing the modified bacterial cellulose with the living cell derived material to obtain a mixture, injecting the mixture into a mold, and preparing the neural restoration tissue engineering scaffold by an ice crystals directional solidification method and a freeze vacuum drying method. The preparation method has the benefits that due to dual bionic design of a structure and a component, the living cell derived material, modified nano fibers and a conductive nano material are combined, so that the obtained scaffold is high in moisture content, good in comprehensive mechanical property and high in stability, and has bioactivity and electroactivity; meanwhile, growth and increment of blood cells can be promoted favorably, and a function of axonal regeneration can be guided; the preparation method is simple, and the shape and the size of a prepared product are easy to control; various requirements of the neural restoration tissue engineering scaffold can be met, and the application prospect is wide.
Owner:UNIV OF SCI & TECH BEIJING
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products