Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

44 results about "Copper(I) cyanide" patented technology

Copper(I) cyanide is an inorganic compound with the formula CuCN. This off-white solid occurs in two polymorphs; impure samples can be green due to the presence of Cu(II) impurities. The compound is useful as a catalyst, in electroplating copper, and as a reagent in the preparation of nitriles.

Surface treatment method for increasing conductivity of aluminum conductive body for switch cabinet

The invention relates to a surface treatment method for increasing the conductivity of an aluminum conductive body for a switch cabinet. The problems in the conventional surface treatment of the aluminum conductive body can be effectively solved, the conductive property is improved, and the electric transmission effects can be improved. The surface treatment method comprises the following steps of: firstly, preparing zinc soaking liquid, copper pre-plating liquid and copper plating liquid, wherein the zinc soaking liquid is prepared by dissolving sodium hydroxide in water, adding zinc oxide, heating the mixture until the mixture is entirely dissolved, dissolving ferric trichloride and sodium potassium tartrate tetrahydrate in the water, and adding the water and uniformly mixing after mixing; the copper pre-plating liquid is prepared by dissolving sodium cyanide in the water, adding cuprous cyanide, and adding the water to uniformly mix; and the copper plating liquid is prepared by respectively adding water to dissolve and mix copper pyrophosphate, potassium pyrophosphate and disodium hydrogen phosphate, dissolving amine triacetate with a sodium hydroxide solution, and adding the water after the both are mixed; removing oil of the aluminum conductive body, bleaching the aluminum conductive body, soaking the aluminum conductive body into the zinc soaking liquid for zinc soaking twice, placing the aluminum conductive body in the copper pre-plating liquid for copper pre-plating, washing the aluminum conductive body, and then arranging the aluminum conductive body in the copper plating liquid for copper plating so as to achieve a requested thickness. The surface treatment method provided by the invention is simple, is easy to operate and use, is good in effect, and is safe and environment-friendly. Therefore, the properties of a lead wire are improved.
Owner:HENAN XINKAI ELECTRICAL GROUP

Method for preparing 2-nitro-4-trifluoromethylbenzonitrile

The invention discloses a method for preparing 2-nitro-4-trifluoromethylbenzonitrile. The method includes the steps that cuprous cyanide is dissolved in N-methyl-2-pyrrolidone, then a catalyst is added, a thermal reaction is conducted for 8-14 h at 150-160 DEG C after addition, and GC detection is conducted till reaction of 2-nitro-4-(trifluoromethyl)halogenobenzene is finished; the product is cooled to room temperature, the solution is poured into a 40-50% ethyl acetate aqueous solution with the molar weight being 4.0-8.0 times that of a 2-nitro-4-trifluoromethylbenzonitrile crude product under the stirring condition, copper salt is filtered out, a filter cake is washed and extracted by means of ethyl acetate with the molar weight being 2-4 times that of 2-nitro-4-trifluoromethylbenzonitrile, oil layers are mixed and then washed with water, finally the product is dried with anhydrous magnesium sulfate and then subjected to vacuum rectification, and a 2-nitro-4-trifluoromethylbenzonitrile fine product is obtained. Use of virulent cyaniding reagents like sodium cyanide and potassium cyanide is avoided, the catalyst is used, reaction selectivity is improved, the yield is increased, the process is mild, and the yield reaches 90-93%.
Owner:SHANDONG RUNBO BIOTECH CO LTD

Improved synthesis process for lamotrigine

The invention discloses an improved synthesis process for lamotrigine. The process comprises the following steps: (1) synthesizing 2,3-dichlorobenzoyl cyanide: adding 2,3-dichlorobenzoic acid and thionyl chloride into a reactor, carrying out depressurized evaporating to remove thionyl chloride after a reaction is completed, adding cuprous cyanide into the reactor, and filtering out solids after a reaction is completed, so as to obtain a 2,3-dichlorobenzoyl cyanide solution; (2) preparing a condensate: adding aminoguanidine carbonate and an entrainer into a reactor, dropwise adding concentrated sulfuric acid, distilling off the entrainer and water, carrying out suction filtration, enabling solids to enter a reaction bottle, carrying out depressurized pumping, then, adding the 2,3-dichlorobenzoyl cyanide solution obtained in the step (1) into the reaction bottle, cooling the reaction bottle to room temperature after a reaction is completed, and carrying out suction filtration, so as to obtain the condensate; and (3) preparing cyclics: adding liquid alkali into the condensate obtained in the step (2), and carrying out crystallizing, filtering, washing and baking after a reaction, thereby obtaining the lamotrigine. According to the improved synthesis process for the lamotrigine, the quality and yield of the product, i.e., the lamotrigine can be remarkably increased, and the yield reaches 90% or more.
Owner:ZHEJIANG QICAI ECO TECH CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products