Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

41 results about "Ternary semiconductors" patented technology

Ternary semiconductors. Abstract. The group of the ternary compounds, which includes the chalcopyrite and many other less well known ordered and disordered semiconductors, has a number of physical properties, which are not found in the simpler binary semiconductors.

Method and Apparatus for Light Absorption and Charged Carrier Transport

Embodiments of the invention pertain to the use of alloyed semiconductor nanocrystals for use in solar cells. The use of alloyed semiconductor nanocrystals offers materials that have a flexible stoichiometry. The alloyed semiconductor may be a ternary semiconductor alloy, such as AxB1-xC or AB1-yCy, or a quaternary semiconductor alloy, such as AxByC1-x-yD, AxB1-xCyD1-y or ABxCyD1-x-y (where A, B, C, and D are different elements). In general, alloys with more than four elements can be used as well, although it can be much harder to control the synthesis and quality of such materials. Embodiments of the invention pertain to solar cells having a layer incorporating two or more organic materials such that percolated paths for one or both molecular species are created. Specific embodiments of the invention pertain to a method for fabricating nanostructured bulk heterojunction that facilitates both efficient exciton diffusion and charge transport. Embodiments of the subject invention pertain to a solar cell having an architecture that allows for efficient harvesting of solar energy. The organic solar cell architecture can incorporate a host/guest (or matrix/dopant) material system that utilizes the long diffusion lengths for triplet excitons without compromising light absorption efficiency.
Owner:UNIV OF FLORIDA RES FOUNDATION INC

Fe-Si-Al ternary amorphous thin film with adjustable band gap width and preparation method of thin film

The invention discloses a Fe-Si-Al ternary amorphous thin film with adjustable band gap width and a preparation method of the thin film, belonging to the technical field of semiconductor materials. The thin film comprises the following formula: Fe(1-x-y)SixAly, wherein x is not lower than 50at.% and not higher than 70at.%; y is not lower than 1at.% and not higher than 11at.%; when the total amount of (x+y) is changed to 75at.% from 60at.%, the band gap width of the thin film can be adjusted to 0.65eV from 0.45eV; and the structure of the thin film is an amorphous structure. The film has the following advantages that (1), the Fe(1-x-y)SixAly thin film is a ternary amorphous thin film with adjustable band gap width from 0.45 eV to 0.65eV; Al not only affects the band gap width, but also increases the amorphous forming ability by increasing a component element film; (2), the total amount of (Si+Al) in the film can be conveniently adjusted by changing the quantity of Fe4Alz alloy sheets and the z value in a combined sputtering target to obtain different band gap widths; (3), the thin film is kept amorphous, so that the uniformity of the components and performances can be ensured, and the problems such as lattice mismatch, and multi-phase mixing and the like in the amorphous thin film preparation are effectively avoided. The Fe-Si-Al ternary amorphous thin film with adjustable band gap width provided by the invention is suitable for manufacturing narrow band-gap semiconductor apparatuses such as an infrared detector.
Owner:DALIAN UNIV OF TECH

Preparation method for group I-III-VI tri-element semiconductor nanocrystalline light-emitting film

The invention relates to a preparation method for a group I-III-VI tri-element semiconductor nanocrystalline light-emitting film. The employed technical scheme comprises: mixing a monovalent metal salt of group I elements, a trivalent chlorinated salt of group III elements, a capping agent, a surface coating agent and a nonpolar high-boiling-point solvent, so as to obtain a mixed precursor solution; under the protection of an inert gas, heating the mixed precursor solution from room temperature to 60-180 DEG C, so as to form a clear transparent solution; adding an oleylamine solution of a group VI element, so as to obtain a group I-III-VI tri-element semiconductor nanocrystalline solution; adding a polar solvent, performing centrifugation purifying; and then adding a composition A and a composition B of an LED pouring sealant, so as to obtain the group I-III-VI tri-element semiconductor nanocrystalline light-emitting film. The preparation process is green and environment-friendly, the preparation method is simple, and the prepared semiconductor nanocrystalline light-emitting film has excellent fluorescence performances of quantum dots and good machining performance of an epoxy resin AB glue substrate, and is applicable to solid-state lighting LED.
Owner:LIAONING UNIVERSITY

Fe-Cr-Si ternary amorphous thin film capable of modulating band gap width and preparation method thereof

The invention discloses a Fe-Cr-Si ternary amorphous thin film capable of modulating band gap width and a preparation method thereof, and belongs to the technical field of semiconductor materials. The Fe-Cr-Si ternary amorphous thin film has the following general formula: Fe3Cr1Six, wherein x is 8-18; along with increase of x from 8 to 18, the band gap width increases from 0 eV to 0.65 eV; and the thin film structure is amorphous. Compared with an ordinary binary transition metal silicide thin film, the Fe-Cr-Si ternary amorphous thin film has the advantages as follows: 1, the Fe3Cr1Six thin film is a novel ternary semiconductor amorphous thin film and can modulate the band gap width within a relatively large range of 0-0.65 eV; and under the action of Cr, the band gap width can be affected and the amorphous forming capability of the thin film can be increased through addition of one element; 2, the proportion of Si in the Fe3Cr1Six thin film can be conveniently regulated only by changing the number of Fe3Cr1 alloys in a combined sputtering target, thus obtaining different band gap widths; and 3, the Fe3Cr1Six thin film is amorphous, so that the uniformity of components and the performance can be ensured, and lattice mismatch and multiphase mixing and other problems during preparation of a crystalline thin film are effectively avoided. Therefore, the Fe-Cr-Si ternary amorphous thin film is applicable to production of near infrared detectors and other semiconductor devices with narrow band gaps.
Owner:DALIAN UNIV OF TECH

Ternary semiconductor PbSnS3 nano crystal and preparation method thereof

The invention relates to ternary semiconductor PbSnS3 nano crystal trithio tin lead and a physical preparation method thereof. The preparation method comprises the following steps: (1) washing a ball milling tank, drying, sealing a powder mixture of high-purity lead powder, tin powder and sulfur powder as raw materials inside the ball milling tank, and performing emptying treatment after the ball milling tank is sealed so as to prevent samples from being oxidized in reaction, wherein the particle size of the added powder is 100+/-5nm; (2) mounting the ball milling tank on a ball mill for implementing ball milling, adjusting the rotation speed of the motor of the ball mill to be 1200r/minute, and implementing ball milling for more than 5 hours, thereby obtaining the ternary semiconductor nano crystal PbSnS3. The trithio tin lead nano crystal provided by the invention has the beneficial effects of being uniform in size, high in pure phase (no impurity) and good in crystallinity. In addition, compared with a chemical method which has the defects that harsh conditions (high temperature and high pressure) are needed, a reaction precursor is toxic and the like, the preparation method has remarkable advantages that the preparation process is simple, green and environment-friendly, large-scale production can be achieved, and the like.
Owner:WUHAN UNIV OF TECH

Ternary semiconductor laminated composite photoelectrode, and preparation method and application thereof

The invention discloses a ternary semiconductor laminated composite photoelectrode, and a preparation method and an application thereof. The photoelectrode has an effective substance with a chemical formula of TiO2 / ZnO / BiOCl. The preparation method for the photoelectrode comprises the following steps: preparing TiO2 nanowires on FTO through a hydrothermal method so as to obtain a sample substrate1, then preparing a ZnO seed crystal layer on the sample substrate 1 through a sol-gel method, preparing the ZnO seed crystal layer coated sample substrate 1 into a sample substrate 2 covered with a ZnO nanowire array through a hydrothermal method, successively subjecting the sample substrate 2 to cyclic soaking in a Bi(NO3)3 solution, distilled water, a KCl solution and distilled water, then carrying out calcination, annealing and washing so as to obtain the ternary semiconductor laminated composite photoelectrode. Compared with a single TiO2 sample, the TiO2 / ZnO / BiOCl composite photoelectrode provided by the invention has the following advantages: photocurrent intensity is significantly improved; an electron hole recombination rate is reduced; photoelectric performance is significantly reinforced; a photocatalytic reaction is successfully expanded from an ultraviolet light region to a visible light region; the utilization efficiency of solar energy is improved; and the TiO2 / ZnO / BiOClcomposite photoelectrode can be used for photoelectrochemical photolysis of water to produce hydrogen.
Owner:NORTHWEST NORMAL UNIVERSITY

Ternary semiconductor composite film and preparation method and application thereof

The invention relates to the technical field of photochemical cathodic protection, in particular to a ternary semiconductor composite film and a preparation method and application thereof. The invention aims at providing the ternary semiconductor composite film and the preparation method and application thereof according to the defects pointed in the prior art, and aims at solving the problems that in the prior art, the migration rate of electrons generated after light absorbing of broad-band gaps of a single TiO2 semiconductor material, and the separation effect of the electrons and holes ispoor, so that photo-generated charge recombination and a shorter optical response range are easy to cause. The TiO2 film, TiO2/CdS film and TiO2/CdS/ZnFe2O4 film are sequentially prepared on titaniumsheets through the methods such as an anodic oxidation method, a continuous ion layer adsorption method and a hydrothermal method. The ternary semiconductor composite film has the beneficial effects that the photoelectrochemistry property and photogenic cathodic protection property of the TiO2/CdS/ZnFe2O4 film are significantly improved compared with that of a single TiO2 sample, and the ternary semiconductor composite film has an excellent anti-corrosion protection property on stainless steel.
Owner:NORTHWEST NORMAL UNIVERSITY

A kind of ternary semiconductor lamination composite photoelectrode and its preparation method and application

The invention discloses a ternary semiconductor laminated composite photoelectrode, and a preparation method and an application thereof. The photoelectrode has an effective substance with a chemical formula of TiO2 / ZnO / BiOCl. The preparation method for the photoelectrode comprises the following steps: preparing TiO2 nanowires on FTO through a hydrothermal method so as to obtain a sample substrate1, then preparing a ZnO seed crystal layer on the sample substrate 1 through a sol-gel method, preparing the ZnO seed crystal layer coated sample substrate 1 into a sample substrate 2 covered with a ZnO nanowire array through a hydrothermal method, successively subjecting the sample substrate 2 to cyclic soaking in a Bi(NO3)3 solution, distilled water, a KCl solution and distilled water, then carrying out calcination, annealing and washing so as to obtain the ternary semiconductor laminated composite photoelectrode. Compared with a single TiO2 sample, the TiO2 / ZnO / BiOCl composite photoelectrode provided by the invention has the following advantages: photocurrent intensity is significantly improved; an electron hole recombination rate is reduced; photoelectric performance is significantly reinforced; a photocatalytic reaction is successfully expanded from an ultraviolet light region to a visible light region; the utilization efficiency of solar energy is improved; and the TiO2 / ZnO / BiOClcomposite photoelectrode can be used for photoelectrochemical photolysis of water to produce hydrogen.
Owner:NORTHWEST NORMAL UNIVERSITY

ternary semiconductor pbsns 3 Nanocrystal and preparation method thereof

The invention relates to ternary semiconductor PbSnS3 nano crystal trithio tin lead and a physical preparation method thereof. The preparation method comprises the following steps: (1) washing a ball milling tank, drying, sealing a powder mixture of high-purity lead powder, tin powder and sulfur powder as raw materials inside the ball milling tank, and performing emptying treatment after the ball milling tank is sealed so as to prevent samples from being oxidized in reaction, wherein the particle size of the added powder is 100+ / -5nm; (2) mounting the ball milling tank on a ball mill for implementing ball milling, adjusting the rotation speed of the motor of the ball mill to be 1200r / minute, and implementing ball milling for more than 5 hours, thereby obtaining the ternary semiconductor nano crystal PbSnS3. The trithio tin lead nano crystal provided by the invention has the beneficial effects of being uniform in size, high in pure phase (no impurity) and good in crystallinity. In addition, compared with a chemical method which has the defects that harsh conditions (high temperature and high pressure) are needed, a reaction precursor is toxic and the like, the preparation method has remarkable advantages that the preparation process is simple, green and environment-friendly, large-scale production can be achieved, and the like.
Owner:WUHAN UNIV OF TECH

Fe-Cr-Si ternary amorphous thin film capable of modulating band gap width and preparation method thereof

The invention discloses a Fe-Cr-Si ternary amorphous thin film capable of modulating band gap width and a preparation method thereof, and belongs to the technical field of semiconductor materials. The Fe-Cr-Si ternary amorphous thin film has the following general formula: Fe3Cr1Six, wherein x is 8-18; along with increase of x from 8 to 18, the band gap width increases from 0 eV to 0.65 eV; and the thin film structure is amorphous. Compared with an ordinary binary transition metal silicide thin film, the Fe-Cr-Si ternary amorphous thin film has the advantages as follows: 1, the Fe3Cr1Six thin film is a novel ternary semiconductor amorphous thin film and can modulate the band gap width within a relatively large range of 0-0.65 eV; and under the action of Cr, the band gap width can be affected and the amorphous forming capability of the thin film can be increased through addition of one element; 2, the proportion of Si in the Fe3Cr1Six thin film can be conveniently regulated only by changing the number of Fe3Cr1 alloys in a combined sputtering target, thus obtaining different band gap widths; and 3, the Fe3Cr1Six thin film is amorphous, so that the uniformity of components and the performance can be ensured, and lattice mismatch and multiphase mixing and other problems during preparation of a crystalline thin film are effectively avoided. Therefore, the Fe-Cr-Si ternary amorphous thin film is applicable to production of near infrared detectors and other semiconductor devices with narrow band gaps.
Owner:DALIAN UNIV OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products