Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

217 results about "X-ray scattering techniques" patented technology

X-ray scattering techniques are a family of non-destructive analytical techniques which reveal information about the crystal structure, chemical composition, and physical properties of materials and thin films. These techniques are based on observing the scattered intensity of an X-ray beam hitting a sample as a function of incident and scattered angle, polarization, and wavelength or energy.

Method for reconstructing residual stress field of profile of large-dimension fir-type blade wheel groove

The invention relates to a method for reconstructing a residual stress field of a profile of a large-dimension fir-type blade wheel groove, comprising the following steps of: selecting a plurality of discrete points on the outline profile of a fir-type milling cutter as detection points to obtain the equivalent cutting speed, the equivalent cutting thickness and the equivalent feed speed of a standard cutting experiment carried out by using a standard integral cylindrical end milling cutter; obtaining the residual stress simulated by a finite element of each detection point by adopting an infinitesimal modeling method; carrying out the standard cutting experiment, measuring the residual stress by adopting an X-ray diffraction method and a corrosion method, and correcting an equivalent two-dimensional orthogonal cutting finite element model; simulating other discrete points by utilizing the corrected simulation model to obtain the residual stress of each discrete point, and thereby fitting to obtain the residual stress field distribution of the integral blade wheel groove profile. The method reduces subsequent rolling treatment times by aiming at the complex profile processing of the wheel groove, and thereby, the production efficiency is greatly improved, and the consumption cost of a rolling tool is reduced.
Owner:SHANGHAI JIAO TONG UNIV

Negative electrode for non-aqueous secondary battery, and a non-aqueous secondary battery

[Objectives] The present invention provides a non-aqueous secondary battery in which a material containing Si and O as constituent elements is used in a negative electrode. The present invention provides a non-aqueous secondary battery having good charge discharge cycle characteristics, and suppressing the battery swelling associated with the charge and the discharge. Also, the present invention relates to a negative electrode that can provide the non-aqueous secondary battery. [Solution] The negative electrode includes a negative electrode active material, including a composite of a material containing Si and O as constitution elements (atom ratio x of O to Si is 0.5≦x≦1.5) in combination with a carbon material, and graphite. The graphite has an average particle diameter dg(μm) of 4 to 20 μm. The material containing Si and O as constitution elements has an average particle diameter ds(μm) of 1 μm or more. The ratio ds/dg (i.e., ds to dg) is 0.05 to 1. The material containing Si and O as constitution elements has a crystallite diameter of 50 nm or less, the crystallite diameter is calculated from a half width at a (220) plane of Si obtained by an X-ray diffraction method, using Scherrer Formula. In 100 mass % of the composite of the material containing Si and O as constitution elements, and the carbon material, a ratio of the material containing Si and O as constitution elements is 70 to 95 mass %.
Owner:MAXELL HLDG LTD

Carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries, and method for producing same

The purpose of the present invention is to provide: a carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries, which uses a plant-derived organic material as a starting material, and from which alkali metals such as potassium element and alkaline earth metals such as calcium element are sufficiently removed by decalcification, so that the carbonaceous material has high purity and excellent discharge capacity and efficiency; a novel production method which is capable of efficiently mass-producing the carbonaceous material; and a lithium ion secondary battery which uses the carbonaceous material. The above-mentioned purpose can be achieved by a carbonaceous material for negative electrodes of nonaqueous electrolyte secondary batteries, which is obtained by carbonizing a plant-derived organic material, and which has an atomic ratio of hydrogen atoms to carbon atoms (H / C) as determined by elemental analysis of 0.1 or less, an average particle diameter (Dv50) of 2-50 mum, an average interplanar spacing of the (002) plane as determined by a powder X-ray diffraction method of 0.365-0.400 nm, a potassium element content of 0.5% by mass or less and a calcium element content of 0.02% by mass or less.
Owner:KUREHA KAGAKU KOGYO KK
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products