Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

286 results about "293t cell" patented technology

293T (or HEK 293T) is a human cell line, derived from the HEK 293 cell line, that expresses a mutant version of the SV40 large T antigen. It is very commonly used in biology for protein expression and production of recombinant retroviruses .

Construction and application of farnesyl pyrophosphoric acid synthetase RNA (Ribonucleic Acid) interference recombinant lentivirus vector

InactiveCN101805750AOvercoming No Commercial AntibodyOvercoming low transfection efficiencyMetabolism disorderGenetic material ingredientsDiseaseFhit gene
The invention provides the construction for a farnesyl pyrophosphoric acid synthetase RNA (Ribonucleic Acid) interference recombinant lentivirus vector, which comprises the following steps of: sieving the most effective target sequence of an FDS (farnesyl diphosphate synthase) gene RNAi (RNA interference) in a tool cell 293T cell, synthesizing the double-stranded DNA of the most effective target sequence, connecting to a pGCSIL-GFP vector and successfully constructing the recombinant vector through enzyme cutting, sequencing and identification. Researches indicate that the constructed RNA interference vector LV-sh-FDS can downwards modulate the expression of an FDS mRNA (Messenger RNA) level in a neonatal rat cardiac myocyte, simultaneously can downwards modulate the expression of myocardial hypertrophy markers such as cell areas and marker genes beta-MHC (Myosin Heavy Chain) and BNP (Brain Natriuretic Peptide), additionally can effectively inhabit the activity of RhoA while downwards modulating the FDS, can be applied in preparing medicaments for treating myocardial hypertrophy diseases and also can be applied in preparing medicaments for cholesterol metabolic control.
Owner:ZHEJIANG UNIV

Method for producing red blood cell drug containing L-ASPase II by in vitro induction

The invention discloses a method for producing a red blood cell drug containing L-ASPase II (L-asparaginase) by in vitro induction. The method comprises the steps of: 1) using a lentiviral vector system to transform induced pluripotent stem (IPS) cells: I. constructing a pLenti6.3 / V5-GW / Em-GFP VerA-L-ASPase II plasmid; II. using 293T cells to perform packaging so as to generate high titer virus particles containing L-ASPase II; III. using the virus particles to transfect induced pluripotent stem cells; and 2) inducing the induced pluripotent stem cells in vitro to generate L-ASPase II-containing red blood cells: I. subjecting IPS cells to in vitro differentiation induction to form an erythroid body EB; and II. performing induced differentiation on EB to obtain mature red cells. The method provided in the invention performs genetic modification on IPS cells by the lentiviral vector system, and induces them in vitro to generate red blood cells containing L-ASPase II. The generated red blood cells can be used as a sustained release carrier of L-ASPase II, and also can maintain the original shapes and functions of red blood cells. The toxic and side effects of L-ASPase II are further reduced, so that the method lays a solid foundation for future clinical application.
Owner:厦门三一造血技术有限公司

Target quaternary ammonium salt cationic polymer lipid gene carrier, preparation method and application thereof

The invention discloses a target quaternary ammonium salt cationic polymer lipid gene carrier, a preparation method and an application thereof. The target quaternary ammonium salt cationic polymer lipid genetic carrier is characterized in that: a polymeric quaternary ammonium salt and lipid are adopted for preparing a quaternary ammonium salt cationic polymer lipid genetic carrier according to a mass ratio, wherein the mass ratio of the polymeric quaternary ammonium salt to the lipid is 0.05-20:1; then a assembly method or a modification method is adopted for modifying to prepare a folic acid or EGFR antibody modified cationic polymer lipid gene carrier. Results of gene transfection experiments show that: gene transfection efficiencies of the target quaternary ammonium salt cationic polymer lipid gene carrier in 293T cells and NIH-3T3 cells are the same as the gene transfection efficiencies of positive control lipofectamine of lipofectamine<TM>2000 in the 293T cells and the NIH-3T3 cells; the gene transfection efficiencies of the EGFR antibody modified cationic polymer lipid genetic carrier in liver cancer Huh-7 cells and breast cancer MCF-7 cells are higher than the gene transfection efficiencies of the lipofectamine<TM>2000 in the liver cancer Huh-7 cells and the breast cancer MCF-7 cells. The cationic polymer lipid genetic carrier system provided by the present invention has good biocompatibility and low cytotoxicity, and can be as an excellent non-viral gene delivery carrier.
Owner:SHANGHAI INST OF ONCOLOGY

Method for building model for collectively evaluating bioavailability and toxicity of cadmium accumulation in food for human body

The invention relates to a method for building a model for collectively evaluating bioavailability and toxicity of cadmium accumulation in food for a human body, and the method comprises the following steps of (1) food sample digestion and determination liquid acquiring: a, grinding a food sample after the food sample is collected, and sequentially digesting the food sample by sequentially adopting gastric juice and intestinal juice; and b, centrifuging the digested mixed liquid, collecting supernate to be sterilized through high pressure; (2) independently culturing Caco-2 cells and 293T cells; (3) combined culture of Caco-2 cells and 293T cells: moving an insertion groove with the Caco-2 cells into a hexagonal-porous plate with the 293T cells to be continuously cultured for 24h; (4) evaluation of bioavailability and toxicity of cadmium: placing the food sample determination liquid on a Caco-2 cell layer of a combined culture model, simultaneously adding iso-osmotic incubation liquid on a 293T cell layer, and continuing the culture for 24h; in the chronic toxicity test, maximally collectively culturing the sample for 10d; and (5) detecting indexes. The method has characteristics of simpleness in operation, easiness in controlling test conditions, small pollution, economical efficiency, accurate result and the like, and also has the advantages for collectively evaluating the bioavailability and toxicity. The method is suitable for evaluating the safety of the cadmium accumulation in grains, vegetables and animal food.
Owner:HENAN UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products