Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

82 results about "Cobalt atom" patented technology

Cobalt is the first element in the ninth column of the periodic table. It is classified as a transition metal. Cobalt atoms have 27 electrons and 27 protons with 32 neutrons in the most abundant isotope.

Ultrathin nanosheet array electro-catalytic material with nano-porous structure and oxygen vacancies

The invention relates to an ultrathin nanosheet array electro-catalytic material with a nano-porous structure and oxygen vacancies. The material is a cobaltosic oxide primary nanosheet array which grows vertically on a conductive substrate and is doped with a metal; an ultrathin nanosheet with oxygen vacancies and nanopores is obtained on each primary nanosheet; the conductive substrate is a titanium sheet or a foamed nickel sheet, and the doped metal is zinc, nickel or manganese; and the thickness of each cobaltosic oxide ultrathin nanosheet doped with the metal is 1.22 nm, nanosheets are in a three-dimensional porous structure, and the nano-pore diameter is 3-6 nm. The ultrathin nanosheet array electro-catalytic material with the nano-porous structure and oxygen vacancies has the following advantages: the material can effectively reduce the overpotential and the spike potential of an oxygen evolution reaction, increase the conversion rate of a single cobalt atom and work continuously and stably in an alkali environment; the steps of a preparation method of the material are simple, the operation is convenient, the cost is low, and the material is environmental-friendly; and new ideas and strategies are provided for the function-oriented design and the performance optimization of an oxygen evolution catalyst of a water electrolysis system.
Owner:TIANJIN UNIVERSITY OF TECHNOLOGY

Single-cell-thickness nano porous cobalt oxide nanosheet array electrocatalytic material

A single-cell-thickness nano porous cobalt oxide nanosheet array electrocatalytic material is characterized in that a metal-doped cobalt oxide primary nanosheet array is perpendicularly grown on a conductive substrate, a porous nanosheet is obtained from each primary nanosheet, and the nanosheets are of porous structure; the material is used as an electrocatalyst for oxygen evolution reaction; the material also has excellent hydrogen evolution performance and may function as a bifunctional catalyst for an alkaline full-decomposition water system. The invention has the advantages that the material can effectively reduce overpotential and peaking potential of oxygen evolution reaction, increase conversion rate of single cobalt atoms and operate stably and continuously in a strong alkali environment; the material has excellent oxygen evolution reaction performance and can be applied as an anode and cathode of a full-decomposition water system, effectively reducing trough voltage; the material is simple to prepare, convenient to operate, low in cost and environment-friendly, and new idea and strategy are provided for the guide design and performance optimization of the bifunctional catalyst for the full-decomposition water system.
Owner:TIANJIN UNIVERSITY OF TECHNOLOGY

Lithium secondary cell and positive electrode active material, positive plate, and method for manufacturing them

Provided is lithium secondary cell and positive electrode active material, positive plate, and method for manufacturing them. A lithium secondary cell comprises a positive electrode active material containing a crystal in which the size of crystallite in the direction parallel to the (003) plane of the crystal of lithium cobaltate is 800 ANGSTROM or more and the coordinate number of a cobalt atom with respect to another cobalt atom is 5.7 or more. The characteristics such as the rate characteristics, low-temperature characteristics, and cycle characteristics of the lithium secondary cell are improved. By adding preferable modes of the positive plate, for example, (a mode in which 50% or less of the surface of the positive electrode active material is covered with an electrically conductive material), (a mode in which the porosity of the positive electrode coating layer lies in the range from 0.08 cc/g to 0.14 cc/g by using two kinds of electrically conductive material having a particle size of 3 mu m or more and 2 mu m or less or by using one kind of electrically conductive material having a particle size of 10 mu m or less), and (a mode in which the specific area of the positive plate coating layer lies in the range from 0.5 m<2>/g to 1.0 m<2>/g by using an electrically conductive material containing at least carbon black), and further adding a mode of a combination of a preferable negative electrode active material and a preferable electrolyte, a more preferable lithium secondary cell has a sufficient cell capacity, and excellent characteristics such as the cycle characteristics, preservation characteristics, safety, and low-temperature characteristics.
Owner:MITSUBISHI CABLE IND LTD

Method for selectively hydrogenating alpha, beta-unsaturated carbonyl compound by cobalt complex

The invention provides a method for selectively hydrogenating an alpha, beta-unsaturated carbonyl compound. The method for selectively hydrogenating the alpha, beta-unsaturated carbonyl compound comprises the steps that first, a cobalt metal precursor and a carbene ligand are coordinated in a solution to obtain a cobalt complex, and the cobalt complex selectively enables the alpha, beta-unsaturated carbonyl compound to be reduced into a corresponding saturated carbonyl compound in a hydrogen atmosphere under the activation of an activator. The method for selectively hydrogenating the alpha, beta-unsaturated carbonyl compound has the main advantages that cobalt is used as a catalyst, and metal cobalt is cheap and easy to obtain relative to noble metal such as palladium, ruthenium, osmium, iridium and platinum, and the catalyst cost is greatly reduced; secondly, the carbene ligand used in the method has the advantages of simple structure, low price, strong coordination ability with cobalt atoms compared with a commonly used phosphine ligand; and finally, the addition of the activator can further significantly increase the activity of the cobalt catalyst. The hydrogenation reaction condition is mild, the reaction rate is high, substantially no carbonyl hydrogenation side reaction occurs, and the carbonyl compound can be obtained in a high yield.
Owner:WANHUA CHEM GRP CO LTD

Boriding method of wear-resisting composite member

InactiveCN102634752AAffects connection strengthThere will be no phenomenon of melting and welding falling offSolid state diffusion coatingTungsten atomBoriding
The invention provides a boriding method of a wear-resisting composite member. The boriding method comprises the following steps: a) preheating the wear-resisting composite member by adopting a hot spray gun so as to rise the temperature of the surface of the wear-resisting composite member to be 800 DEG C-850 DEG C; b) spraying a boriding agent to the surface of the wear-resisting composite member obtained from the step a to obtain the wear-resisting composite member with the boronized surface. When the wear-resisting composite member is subjected to boriding, the wear-resisting composite member is preheated by using the hot spray gun, so that the temperature of the surface of a workpiece is high, the internal temperature of the workpiece is lower than the surface temperature of the workpiece, the brazing connection position of the composite member can not be affected, the connection strength of the composite member can not be affected, after the wear-resisting composite member is preheated, the boriding agent is sprayed to the surface of the composite member, the boriding agent is subjected to reaction under high temperature so as to generate active boron atoms, the active boron atoms combine with cobalt atoms and tungsten atoms melt in the surface, so as to form a compound, so that a boriding layer of a boron compound is formed.
Owner:SEED TECH CORP LTD

Method for preparing hollow nanofiber, hollow nanofiber and catalyst composition for preparing hollow nanofiber

A method for preparing hollow nanofibers having carbon as a primary component, which comprises contacting a carbon-containing compound with a catalyst at a temperature of 500 to 1200 DEG C, wherein as the catalyst use is made of a catalyst comprising a zeolite exhibiting the thermal resistance at 900 DEG C and, supported thereon, a metal; a catalyst comprising a metallosilicate zeolite containing a heteroatom except aluminum and silicon in the structural framework thereof and, supported thereon, a metal; a catalyst comprising a supporting material and, supported thereon, fine cobalt particles exhibiting a binding energy of a cobalt 2P3 / 2 electron of 779.3 to 781.0 eV, as measured by the X-ray photoelectron spectroscopy; a catalyst comprising a supporting material and, supported thereon, fine cobalt particles exhibiting a cobalt atom ratio in the surface of the supporting material of 0.1 to 1.5%, as measured by the X-ray photoelectron spectroscopy under a condition of 10 kV and 18 mA; a catalyst comprising a supporting material and, supported thereon, fine cobalt particles exhibiting a weight ratio of cobalt to a second metal component (weight of cobalt / weight of the second metal component) of 2.5 or more; or a catalyst comprising a zeolite having a film form and, supported on the surface thereof, a metal.
Owner:TORAY IND INC

Method for prolonging endurance life of diamond compact and diamond compact

The invention relates to the technical field of super-hard composite materials, in particular to a method for prolonging the endurance life of a diamond compact and the diamond compact. The method forprolonging the endurance life of the diamond compact includes the steps: irradiating an interface between a substrate and a diamond layer and the surface of the diamond layer by ultra-fast pulse laser beams; polishing the surface of the diamond layer. The diamond compact is manufactured by the ultra-fast pulse laser beams, a gradient transition layer is generated between layers, so that the substrate and the diamond layer are firmly combined, and sudden change of a thermal quantity and a mechanical quantity on the interlayer interface is avoided. The surface (cold annealing) of the diamond layer is irradiated by the ultra-fast pulse laser beams, thermal stress concentration and lattice defects of the diamond layer can be eliminated, D-D bonds on the surface of the diamond layer can be firmly bonded, cobalt atoms are 'extruded' to the surface of the diamond layer, a rich cobalt layer is removed by polishing, ultra-high surface smoothness is realized, the high-temperature resistance ofthe diamond compact is improved, and the service life of the diamond compact is prolonged.
Owner:上海梁为科技发展有限公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products