Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

51 results about "Methylammonium ion" patented technology

Infobox references. Tetramethylammonium (TMA) or (Me4N+) is the simplest quaternary ammonium cation consisting of four methyl groups attached to a central nitrogen atom, and is isoelectronic with neopentane.

Ionic additives for extreme low dielectric constant chemical formulations

A process for depositing porous silicon oxide-based films using a sol-gel approach utilizing a precursor solution formulation which includes a purified nonionic surfactant and an additive among other components, where the additive is either an ionic additive or an amine additive which forms an ionic ammonium type salt in the acidic precursor solution. Using this precursor solution formulation enables formation of a film having a dielectric constant less than 2.5, appropriate mechanical properties, and minimal levels of alkali metal impurities. In one embodiment, this is achieved by purifying the surfactant and adding ionic or amine additives such as tetraalkylammonium salts and amines to the stock precursor solution. In some embodiments, the ionic additive is a compound chosen from a group of cationic additives of the general composition [NR(CH3)3]+A−, where R is a hydrophobic ligand of chain length 1 to 24, including tetramethylammonium and cetyltrimethylammonium, and A− is an anion, which may be chosen from the group consisting essentially of formate, nitrate, oxalate, acetate, phosphate, carbonate, and hydroxide and combinations thereof. Tetramethylammonium salts, or more generally tetraalkylammonium salts, or tetraorganoammonium salts or organoamines in acidic media are added to surfactant templated porous oxide precursor formulations to increase the ionic content, replacing alkali ion impurities (sodium and potassium) removed during surfactant purification, but which are found to exhibit beneficial effects in promoting the formation of the resulting dielectric.
Owner:VERSUM MATERIALS US LLC

Method for Enhancing High Temperature and Low Temperature Resistance of Aluminum Electrolytic Capacitors

The invention discloses a method for enhancing the high temperature resistance and low temperature resistance of an aluminum electrolytic capacitor, which includes the preparation of an electrolyte, and the electrolyte includes the following raw materials in parts by weight: main solvent: 48-80%; auxiliary solvent: 10-32%, solute : 15-30%, additives: 0.3-3.2%, wherein, the solvent composed of the main solvent and the auxiliary solvent is a liquid with low saturated vapor pressure; the solute is tetramethylammonium maleate, ammonium adipate, triethylamine, One or more of 1,2-dimethylimidazolium phosphoric acid and phosphorous acid. Due to the selection of solvents with low saturated vapor pressure, the ratio of solutes is increased to ensure that the electrolyte does not condense at low temperature and the solutes do not precipitate; adding hydrogen absorbing agents and water suppressing agents reduces the internal pressure of the product; adding inhibitors and low leakage agents, The occurrence of high-temperature characteristic defects such as too fast recovery of electric leakage is prevented; the invention can also effectively ensure the low-temperature stability of the electrolyte, and provide guarantee for the stable operation of the LED driving power supply.
Owner:ZHAOQING BERYL ELECTRONICS TECH

Octakis (acetylenyl dimethyl siloxane) polysilsesquioxane and synthetic method thereof

The invention relates to a synthetic method of octakis (acetylenyl dimethyl siloxane) polysilsesquioxane. The synthetic method comprises the steps that (1) 1,3-acetylene-1,1,3,3-tetramethyldisiloxane is synthesized by Grignard reaction; (2) 1,3-acetylene-1,1,3,3-tetramethyldisiloxane is hydrolyzed to obtain ethinyl dimethyl silicon alcohol, and a chloridizing agent is used for chloridizing silicon hydroxyl to obtain acetenyl dimethylchlorosilane; (3) tetraethoxysilane is used, hydrolytic condensation is performed under an alkaline condition provided by tetramethylammonium hydroxide, and octamer tetramethylammonium silicate is obtained; (4) the octamer tetramethylammonium silicate and the acetenyl dimethylchlorosilane react to obtain the octakis (acetylenyl dimethyl siloxane) polysilsesquioxane. The prepared octakis (acetylenyl dimethyl siloxane) polysilsesquioxane has end alkynyl and excellent high temperature resistance and high reactivity, and can be used for preparing nanometer POSS (polyhedral oligomeric silsesquioxane) materials; the octakis(acetylenyl dimethyl siloxane)polysilsesquioxane can be applied in spatial and medical functional materials and the like and has an excellent development and application prospect.
Owner:EAST CHINA UNIV OF SCI & TECH

Flame-retardant organic electrolyte for supercapacitor, preparation method of flame-retardant organic electrolyte and supercapacitor

A flame-retardant organic electrolyte for a supercapacitor comprises an electrolyte salt, a non-aqueous organic solvent and a functional additive, wherein the electrolyte salt is tetraethylammonium tetrafluoroborate and tetramethylammonium bis(oxalate)borate, the non-aqueous organic solvent is propylene carbonate, dimethyl carbonate, ethyl methyl carbonate and gamma-butyrolactone, and the functional additive is a fluoro-substituted phosphonitrile compound. With the adoption of appropriate proton inertia organic solvent, the dissolving capacity and the dissociation capacity of the electrolyte salt in the supercapacitor electrolyte are improved, the ion conductivity of the electrolyte is improved, the internal resistance of an organic electrolyte is reduced, an electrochemical stable windowof the electrolyte is expanded, so that the obtained electrolyte has favorable electrochemical stability, chemical stability and charge-discharge cycle stability; and a relatively small amount of flame-retardant agent fluoro-substituted phosphonitrile compound is added, thus, the influence on the electrical property of the electrolyte is relatively small, the influence on the viscosity of the electrolyte is relatively small, and a relatively good flame-retardant effect can be achieved.
Owner:WUJIANG JIA BILLION ELECTRONICS TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products