Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

509results about How to "Short reaction path" patented technology

Hydrophobic POSS (Polyhedral Oligomeric Silsesquioxane)-based hybridization fluorinated acrylate resin as well as preparation method and application thereof

The invention discloses a hydrophobicPOSS (Polyhedral Oligomeric Silsesquioxane)-based hybridization fluorinated acrylate resin as well as a preparation method and an application thereof. The formula of the hydrophobic POSS-based hybridization fluorinated acrylate resin comprises the following raw materials in percentage by weight: 2-12% of POSS-based monomer, 2-11% of hard monomer, 3-16% of soft monomer, 1.5-7% of fluoroacrylate monomer, 3-11% of crosslinking monomer, 0.4-1.3% of triggering agent and 50-79% of solvent. The application of the hydrophobic POSS-based hybridization fluorinated acrylate resin is characterized in that a crosslinking-type copolymer is mixed with a curing agent, the hydrophobic POSS-based hybridization fluorinated acrylate resin aggregates and is self-assembled in a film-forming solvent so as to form a micellar solution, then a phase isolation technology is used for ensuring that the solvent volatilizes on filter paper or a metal screen to form a film so as to construct a composite multi-scale structure, so that a super-hydrophobic coating is prepared. The preparation method has the advantages that a free radical solution polymerization method is adopted, synthetic conditions are simple, reaction routes are simple, raw materials are simple and easy to get, and the preparation technological processes of organic / inorganic hybrid materials are greatly simplified; the hydrophobic POSS-based hybridization fluorinated acrylate resin has wide application prospect in the field of waterproof and dampproof coating and the like.
Owner:SOUTH CHINA UNIV OF TECH

(Ti,M)C nano solid solution powder and preparation method thereof

The invention discloses (Ti,M)C nano solid solution powder and a preparation method thereof. The (Ti,M)C nano solid solution powder is prepared from the following components in percentage by weight: 35 to 79.9 percent of Ti, 0.1 to 35 percent of M and the balance of C, wherein the M is at least one of W, Mo, Cr, Ta, V and Nb. The preparation method comprises the following steps of mixing Ti powder, carbon black powder and a powdery raw material of the component M, carrying out high-energy ball milling, drying a mixture obtained after the ball milling, then putting the dried mixture into a crucible, adding a halogenating agent, afterwards, in the protection condition of an Ar gas, carrying out heat preservation for 2h to 4h at 900 to 1,000 DEG C, so as to obtain halogenating agent mixed (Ti,M)C nano solid solution powder, finally, dissolving the halogenating agent by using distilled water, centrifuging and drying, so that the (Ti,M)C nano solid solution powder is subsequently obtained.The method provided by the invention can be used for completing the carbonization and solid-solution reactions of (Ti,M)C at 900 to 1,000 DEG C; the prepared (Ti,M)C solid solution powder has the characteristic of a single-phase component and has the average particle size which is less than 100nm; the powder is high in purity and the content of the C is easy to precisely regulate and control.
Owner:自贡市泰昶硬质材料有限责任公司

Method for selective synthesis of p-xylene from 4-methyl-3-cyclohexene-1-carbaldehyde

The invention relates to a method for selective preparation of p-xylene from 4-methyl-3-cyclohexene-1-carbaldehyde. Specifically speaking, the method comprises the following steps: dehydrogenation and aromatization as well as in-situ hydrogenation and deoxidation reactions of 4-methyl-3-cyclohexene-1-carbaldehyde are carried out in the effects of a tungsten-based catalyst at 250-450 DEG C, and p-xylene is prepared. The method can be carried out in a fixed bed reactor, a fluidized bed reactor or a moving-bed reactor separately, and reaction raw materials are directly injected into a reactor by an injection pump, or the reaction raw materials pass a catalyst bed layer with purging of carrier gas in order to obtain p-xylene. The process has the advantages of simple reaction process, and high selectivity of target product; the substrates can be obtained by Diels-Alder reaction from isoprene and acrolein which are derived from biomass resources and are used as raw materials, and mole yield of p-xylene reaches 90%. Compared with the prior art, the method has the advantages of cheap raw materials and wide sources, economy of reaction carbon atoms, and the like; the tungsten-based catalyst is cheap, and a new route for preparing p-xylene from biomass is provided.
Owner:DALIAN INST OF CHEM PHYSICS CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products